2. The characteristic equation for the homogeneous problem is $r^{2}+2 r+5=0$, with complex roots $r=-1 \pm 2 i$. Hence $y_{c}(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t$. Since the function $g(t)=3 \sin 2 t$ is not proportional to the solutions of the homogeneous equation, set $Y=A \cos 2 t+B \sin 2 t$. Substitution into the given differential equation, and comparing the coefficients, results in the system of equations $B-4 A=3$ and $A+4 B=0$. Hence $Y=-(12 / 17) \cos 2 t+(3 / 17) \sin 2 t$. The general solution is $y(t)=y_{c}(t)+Y$.
3. The characteristic equation for the homogeneous problem is $r^{2}-r-2=0$, with roots $r=-1,2$. Hence $y_{c}(t)=c_{1} e^{-t}+c_{2} e^{2 t}$. Set $Y=A t^{2}+B t+C$. Substitution into the given differential equation, and comparing the coefficients, results in the system of equations $-2 A=4,-2 A-2 B=-2$ and $2 A-B-2 C=0$. Hence $Y=$ $-2 t^{2}+3 t-7 / 2$. The general solution is $y(t)=y_{c}(t)+Y$.
4. The characteristic equation for the homogeneous problem is $r^{2}+r-6=0$, with roots $r=-3,2$. Hence $y_{c}(t)=c_{1} e^{-3 t}+c_{2} e^{2 t}$. Set $Y=A e^{3 t}+B e^{-2 t}$. Substitution into the given differential equation, and comparing the coefficients, results in the system of equations $6 A=12$ and $-4 B=12$. Hence $Y=2 e^{3 t}-3 e^{-2 t}$. The general solution is $y(t)=y_{c}(t)+Y$.
5. The characteristic equation for the homogeneous problem is $r^{2}-2 r-3=0$, with roots $r=-1,3$. Hence $y_{c}(t)=c_{1} e^{-t}+c_{2} e^{3 t}$. Note that the assignment $Y=A t e^{-t}$ is not sufficient to match the coefficients. Try $Y=A t e^{-t}+B t^{2} e^{-t}$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations $-4 A+2 B=0$ and $-8 B=-3$. This implies that $Y=(3 / 16) t e^{-t}+(3 / 8) t^{2} e^{-t}$. The general solution is $y(t)=y_{c}(t)+Y$.
6. The characteristic equation for the homogeneous problem is $r^{2}+9=0$, with complex roots $r= \pm 3 i$. Hence $y_{c}(t)=c_{1} \cos 3 t+c_{2} \sin 3 t$. To simplify the analysis, set $g_{1}(t)=6$ and $g_{2}(t)=t^{2} e^{3 t}$. By inspection, we have $Y_{1}=2 / 3$. Based on the form of g_{2}, set $Y_{2}=A e^{3 t}+B t e^{3 t}+C t^{2} e^{3 t}$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations $18 A+6 B+2 C=0,18 B+12 C=0$, and $18 C=1$. Hence

$$
Y_{2}=\frac{1}{162} e^{3 t}-\frac{1}{27} t e^{3 t}+\frac{1}{18} t^{2} e^{3 t}
$$

The general solution is $y(t)=y_{c}(t)+Y_{1}+Y_{2}$.
9. The characteristic equation for the homogeneous problem is $2 r^{2}+3 r+1=0$, with roots $r=-1,-1 / 2$. Hence $y_{c}(t)=c_{1} e^{-t}+c_{2} e^{-t / 2}$. To simplify the analysis, set $g_{1}(t)=t^{2}$ and $g_{2}(t)=3 \sin t$. Based on the form of g_{1}, set $Y_{1}=A+B t+C t^{2}$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations $A+3 B+4 C=0, B+6 C=0$, and $C=1$. Hence we obtain $Y_{1}=14-6 t+t^{2}$. On the other hand, set $Y_{2}=D \cos t+E \sin t$. After substitution into the ODE, we find that $D=-9 / 10$ and $E=-3 / 10$. The general solution is $y(t)=y_{c}(t)+Y_{1}+Y_{2}$.
11. The characteristic equation for the homogeneous problem is $r^{2}+\omega_{0}^{2}=0$, with complex roots $r= \pm \omega_{0} i$. Hence $y_{c}(t)=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t$. Since $\omega \neq \omega_{0}$, set $Y=A \cos \omega t+B \sin \omega t$. Substitution into the ODE and comparing the coefficients results in the system of equations $\left(\omega_{0}^{2}-\omega^{2}\right) A=1$ and $\left(\omega_{0}^{2}-\omega^{2}\right) B=0$. Hence

$$
Y=\frac{1}{\omega_{0}^{2}-\omega^{2}} \cos \omega t
$$

The general solution is $y(t)=y_{c}(t)+Y$.
12. From Problem 11, $y_{c}(t)$ is known. Since $\cos \omega_{0} t$ is a solution of the homogeneous problem, set $Y=A t \cos \omega_{0} t+B t \sin \omega_{0} t$. Substitution into the given ODE and comparing the coefficients results in $A=0$ and $B=1 / 2 \omega_{0}$. Hence the general solution is $y(t)=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t+t \sin \omega_{0} t /\left(2 \omega_{0}\right)$.
14. The characteristic equation for the homogeneous problem is $r^{2}-r-2=0$, with roots $r=-1,2$. Hence $y_{c}(t)=c_{1} e^{-t}+c_{2} e^{2 t}$. Based on the form of the right hand side, that is, $\cosh (2 t)=\left(e^{2 t}+e^{-2 t}\right) / 2$, set $Y=A t e^{2 t}+B e^{-2 t}$. Substitution into the given ODE and comparing the coefficients results in $A=1 / 6$ and $B=1 / 8$. Hence the general solution is $y(t)=c_{1} e^{-t}+c_{2} e^{2 t}+t e^{2 t} / 6+e^{-2 t} / 8$.
16. The characteristic equation for the homogeneous problem is $r^{2}+4=0$, with roots $r= \pm 2 i$. Hence $y_{c}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t$. Set $Y_{1}=A+B t+C t^{2}$. Comparing the coefficients of the respective terms, we find that $A=-1 / 8, B=0$, $C=1 / 4$. Now set $Y_{2}=D e^{t}$, and obtain $D=3 / 5$. Hence the general solution is $y(t)=c_{1} \cos 2 t+c_{2} \sin 2 t-1 / 8+t^{2} / 4+3 e^{t} / 5$. Invoking the initial conditions, we require that $19 / 40+c_{1}=0$ and $3 / 5+2 c_{2}=2$. Hence $c_{1}=-19 / 40$ and $c_{2}=7 / 10$.
17. The characteristic equation for the homogeneous problem is $r^{2}-2 r+1=0$, with a double root $r=1$. Hence $y_{c}(t)=c_{1} e^{t}+c_{2} t e^{t}$. Consider $g_{1}(t)=t e^{t}$. Note that g_{1} is a solution of the homogeneous problem. Set $Y_{1}=A t^{2} e^{t}+B t^{3} e^{t}$ (the first term is not sufficient for a match). Upon substitution, we obtain $Y_{1}=t^{3} e^{t} / 6$. By inspection, $Y_{2}=4$. Hence the general solution is $y(t)=c_{1} e^{t}+c_{2} t e^{t}+t^{3} e^{t} / 6+4$. Invoking the initial conditions, we require that $c_{1}+4=1$ and $c_{1}+c_{2}=1$. Hence $c_{1}=-3$ and $c_{2}=4$.
19. The characteristic equation for the homogeneous problem is $r^{2}+4=0$, with roots $r= \pm 2 i$. Hence $y_{c}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t$. Since the function $\sin 2 t$ is a solution of the homogeneous problem, set $Y=A t \cos 2 t+B t \sin 2 t$. Upon substitution, we obtain $Y=-3 t \cos 2 t / 4$. Hence the general solution is $y(t)=$ $c_{1} \cos 2 t+c_{2} \sin 2 t-3 t \cos 2 t / 4$. Invoking the initial conditions, we require that $c_{1}=2$ and $2 c_{2}-(3 / 4)=-1$. Hence $c_{1}=2$ and $c_{2}=-1 / 8$.
20. The characteristic equation for the homogeneous problem is $r^{2}+2 r+5=$ 0 , with complex roots $r=-1 \pm 2 i$. Hence $y_{c}(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t$. Based on the form of $g(t)$, set $Y=A t e^{-t} \cos 2 t+B t e^{-t} \sin 2 t$. After comparing coefficients, we obtain $Y=t e^{-t} \sin 2 t$. Hence the general solution is $y(t)=$ $c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t+t e^{-t} \sin 2 t$. Invoking the initial conditions, we require
that $c_{1}=1$ and $-c_{1}+2 c_{2}=0$. Hence $c_{1}=1$ and $c_{2}=1 / 2$.
22.(a) The characteristic equation for the homogeneous problem is $r^{2}+1=0$, with complex roots $r= \pm i$. Hence $y_{c}(t)=c_{1} \cos t+c_{2} \sin t$. Let $g_{1}(t)=t \sin t$ and $g_{2}(t)=t$. By inspection, it is easy to see that $Y_{2}(t)=t$. Based on the form of $g_{1}(t)$, set $Y_{1}(t)=A t \cos t+B t \sin t+C t^{2} \cos t+D t^{2} \sin t$.
(b) Substitution into the equation and comparing the coefficients results in $A=0$, $B=1 / 4, C=-1 / 4$, and $D=0$. Hence $Y(t)=t+t \sin t / 4-t^{2} \cos t / 4$.
23. (a) The characteristic equation for the homogeneous problem is $r^{2}-5 r+6=0$, with roots $r=2,3$. Hence $y_{c}(t)=c_{1} e^{2 t}+c_{2} e^{3 t}$. Consider $g_{1}(t)=e^{2 t}(3 t+4) \sin t$, and $g_{2}(t)=e^{t} \cos 2 t$. Based on the form of these functions on the right hand side of the ODE, set $Y_{2}(t)=e^{t}\left(A_{1} \cos 2 t+A_{2} \sin 2 t\right)$ and $Y_{1}(t)=\left(B_{1}+B_{2} t\right) e^{2 t} \sin t+$ $\left(C_{1}+C_{2} t\right) e^{2 t} \cos t$.
(b) Substitution into the equation and comparing the coefficients results in

$$
Y(t)=-\frac{1}{20}\left(e^{t} \cos 2 t+3 e^{t} \sin 2 t\right)+\frac{3}{2} t e^{2 t}(\cos t-\sin t)+e^{2 t}\left(\frac{1}{2} \cos t-5 \sin t\right)
$$

25. (a) We obtain the double characteristic root $r=2$. Hence $y_{c}(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}$. Consider the functions $g_{1}(t)=2 t^{2}, g_{2}(t)=4 t e^{2 t}$, and $g_{3}(t)=t \sin 2 t$. The corresponding forms of the respective parts of the particular solution are $Y_{1}(t)=$ $A_{0}+A_{1} t+A_{2} t^{2}, Y_{2}(t)=e^{2 t}\left(B_{2} t^{2}+B_{3} t^{3}\right)$, and $Y_{3}(t)=t\left(C_{1} \cos 2 t+C_{2} \sin 2 t\right)+$ $\left(D_{1} \cos 2 t+D_{2} \sin 2 t\right)$.
(b) Substitution into the equation and comparing the coefficients results in

$$
Y(t)=\frac{1}{4}\left(3+4 t+2 t^{2}\right)+\frac{2}{3} t^{3} e^{2 t}+\frac{1}{8} t \cos 2 t+\frac{1}{16}(\cos 2 t-\sin 2 t)
$$

26.(a) The homogeneous solution is $y_{c}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t$. Since $\cos 2 t$ and $\sin 2 t$ are both solutions of the homogeneous equation, set

$$
Y(t)=t\left(A_{0}+A_{1} t+A_{2} t^{2}\right) \cos 2 t+t\left(B_{0}+B_{1} t+B_{2} t^{2}\right) \sin 2 t
$$

(b) Substitution into the equation and comparing the coefficients results in

$$
Y(t)=\left(\frac{13}{32} t-\frac{1}{12} t^{3}\right) \cos 2 t+\frac{1}{16}\left(28 t+13 t^{2}\right) \sin 2 t
$$

27.(a) The homogeneous solution is $y_{c}(t)=c_{1} e^{-t}+c_{2} t e^{-2 t}$. None of the functions on the right hand side are solutions of the homogenous equation. In order to include all possible combinations of the derivatives, consider

$$
\begin{aligned}
Y(t) & =e^{t}\left(A_{0}+A_{1} t+A_{2} t^{2}\right) \cos 2 t+e^{t}\left(B_{0}+B_{1} t+B_{2} t^{2}\right) \sin 2 t+ \\
& +e^{-t}\left(C_{1} \cos t+C_{2} \sin t\right)+D e^{t}
\end{aligned}
$$

(b) Substitution into the differential equation and comparing the coefficients results in

$$
\begin{aligned}
Y(t) & =e^{t}\left(A_{0}+A_{1} t+A_{2} t^{2}\right) \cos 2 t+e^{t}\left(B_{0}+B_{1} t+B_{2} t^{2}\right) \sin 2 t \\
& +e^{-t}\left(-\frac{3}{2} \cos t+\frac{3}{2} \sin t\right)+2 e^{t} / 3
\end{aligned}
$$

in which $A_{0}=-4105 / 35152, A_{1}=73 / 676, A_{2}=-5 / 52, B_{0}=-1233 / 35152, B_{1}=$ $10 / 169, B_{2}=1 / 52$.
28. (a) The homogeneous solution is $y_{c}(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t$. None of the terms on the right hand side are solutions of the homogenous equation. In order to include the appropriate combinations of derivatives, consider

$$
\begin{aligned}
Y(t) & =e^{-t}\left(A_{1} t+A_{2} t^{2}\right) \cos 2 t+e^{-t}\left(B_{1} t+B_{2} t^{2}\right) \sin 2 t+ \\
& +e^{-2 t}\left(C_{0}+C_{1} t\right) \cos 2 t+e^{-2 t}\left(D_{0}+D_{1} t\right) \sin 2 t
\end{aligned}
$$

(b) Substitution into the differential equation and comparing the coefficients results in

$$
\begin{aligned}
Y(t) & =\frac{3}{16} t e^{-t} \cos 2 t+\frac{3}{8} t^{2} e^{-t} \sin 2 t \\
& -\frac{1}{25} e^{-2 t}(7+10 t) \cos 2 t+\frac{1}{25} e^{-2 t}(1+5 t) \sin 2 t
\end{aligned}
$$

30. The homogeneous solution is $y_{c}(t)=c_{1} \cos \lambda t+c_{2} \sin \lambda t$. Since the differential operator does not contain a first derivative (and $\lambda \neq m \pi$), we can set

$$
Y(t)=\sum_{m=1}^{N} C_{m} \sin m \pi t
$$

Substitution into the differential equation yields

$$
-\sum_{m=1}^{N} m^{2} \pi^{2} C_{m} \sin m \pi t+\lambda^{2} \sum_{m=1}^{N} C_{m} \sin m \pi t=\sum_{m=1}^{N} a_{m} \sin m \pi t
$$

Equating coefficients of the individual terms, we obtain

$$
C_{m}=\frac{a_{m}}{\lambda^{2}-m^{2} \pi^{2}}, \quad m=1,2 \ldots N
$$

32. The homogeneous solution is $y_{c}(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t$. The input function is independent of the homogeneous solutions, on any interval. Since the right hand side is piecewise constant, it follows by inspection that

$$
Y(t)=\left\{\begin{array}{cl}
1 / 5, & 0 \leq t \leq \pi / 2 \\
0, & t>\pi / 2
\end{array}\right.
$$

For $0 \leq t \leq \pi / 2$, the general solution is $y(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t+1 / 5$. Invoking the initial conditions $y(0)=y^{\prime}(0)=0$, we require that $c_{1}=-1 / 5$, and that $c_{2}=-1 / 10$. Hence

$$
y(t)=\frac{1}{5}-\frac{1}{10}\left(2 e^{-t} \cos 2 t+e^{-t} \sin 2 t\right)
$$

on the interval $0 \leq t \leq \pi / 2$. We now have the values $y(\pi / 2)=\left(1+e^{-\pi / 2}\right) / 5$, and $y^{\prime}(\pi / 2)=0$. For $t>\pi / 2$, the general solution is $y(t)=d_{1} e^{-t} \cos 2 t+d_{2} e^{-t} \sin 2 t$. It follows that $y(\pi / 2)=-e^{-\pi / 2} d_{1}$ and $y^{\prime}(\pi / 2)=e^{-\pi / 2} d_{1}-2 e^{-\pi / 2} d_{2}$. Since the solution is continuously differentiable, we require that $-e^{-\pi / 2} d_{1}=\left(1+e^{-\pi / 2}\right) / 5$ and $e^{-\pi / 2} d_{1}-2 e^{-\pi / 2} d_{2}=0$. Solving for the coefficients, $d_{1}=2 d_{2}=-\left(e^{\pi / 2}+1\right) / 5$.

34. Since $a, b, c>0$, the roots of the characteristic equation have negative real parts. That is, $r=\alpha \pm \beta i$, where $\alpha<0$. Hence the homogeneous solution is

$$
y_{c}(t)=c_{1} e^{\alpha t} \cos \beta t+c_{2} e^{\alpha t} \sin \beta t
$$

If $g(t)=d$, then the general solution is

$$
y(t)=d / c+c_{1} e^{\alpha t} \cos \beta t+c_{2} e^{\alpha t} \sin \beta t
$$

Since $\alpha<0, y(t) \rightarrow d / c$ as $t \rightarrow \infty$. If $c=0$, then the characteristic roots are $r=0$ and $r=-b / a$. The ODE becomes $a y^{\prime \prime}+b y^{\prime}=d$. Integrating both sides, we find that $a y^{\prime}+b y=d t+c_{1}$. The general solution can be expressed as

$$
y(t)=d t / b+c_{1}+c_{2} e^{-b t / a} .
$$

In this case, the solution grows without bound. If $b=0$, also, then the differential equation can be written as $y^{\prime \prime}=d / a$, which has general solution $y(t)=d t^{2} / 2 a+$ $c_{1}+c_{2}$. Hence the assertion is true only if the coefficients are positive.
35. (a) Since D is a linear operator, $D^{2} y+b D y+c y=D^{2} y-\left(r_{1}+r_{2}\right) D y+r_{1} r_{2} y=$ $D^{2} y-r_{2} D y-r_{1} D y+r_{1} r_{2} y=D\left(D y-r_{2} y\right)-r_{1}\left(D y-r_{2} y\right)=\left(D-r_{1}\right)\left(D-r_{2}\right) y$.
(b) Let $u=\left(D-r_{2}\right) y$. Then the ODE (i) can be written as $\left(D-r_{1}\right) u=g(t)$, that is, $u^{\prime}-r_{1} u=g(t)$. The latter is a linear first order equation in u. Its general solution is

$$
u(t)=e^{r_{1} t} \int_{t_{0}}^{t} e^{-r_{1} \tau} g(\tau) d \tau+c_{1} e^{r_{1} t}
$$

From above, we have $y^{\prime}-r_{2} y=u(t)$. This equation is also a first order ODE. Hence the general solution of the original second order equation is

$$
y(t)=e^{r_{2} t} \int_{t_{0}}^{t} e^{-r_{2} \tau} u(\tau) d \tau+c_{2} e^{r_{2} t}
$$

Note that the solution $y(t)$ contains two arbitrary constants.
37. Note that $\left(2 D^{2}+3 D+1\right) y=(2 D+1)(D+1) y$. Let $u=(D+1) y$, and solve the ODE $2 u^{\prime}+u=t^{2}+3 \sin t$. This equation is a linear first order ODE, with solution

$$
\begin{aligned}
u(t) & =e^{-t / 2} \int_{t_{0}}^{t} e^{\tau / 2}\left[\tau^{2} / 2+\frac{3}{2} \sin \tau\right] d \tau+c e^{-t / 2}= \\
& =t^{2}-4 t+8-\frac{6}{5} \cos t+\frac{3}{5} \sin t+c e^{-t / 2}
\end{aligned}
$$

Now consider the ODE $y^{\prime}+y=u(t)$. The general solution of this first order ODE is

$$
y(t)=e^{-t} \int_{t_{0}}^{t} e^{\tau} u(\tau) d \tau+c_{2} e^{-t}
$$

in which $u(t)$ is given above. Substituting for $u(t)$ and performing the integration,

$$
y(t)=t^{2}-6 t+14-\frac{9}{10} \cos t-\frac{3}{10} \sin t+c_{1} e^{-t / 2}+c_{2} e^{-t}
$$

38. We have $\left(D^{2}+2 D+1\right) y=(D+1)(D+1) y$. Let $u=(D+1) y$, and consider the ODE $u^{\prime}+u=2 e^{-t}$. The general solution is $u(t)=2 t e^{-t}+c e^{-t}$. We therefore have the first order equation $u^{\prime}+u=2 t e^{-t}+c_{1} e^{-t}$. The general solution of the latter differential equation is

$$
y(t)=e^{-t} \int_{t_{0}}^{t}\left[2 \tau+c_{1}\right] d \tau+c_{2} e^{-t}=e^{-t}\left(t^{2}+c_{1} t+c_{2}\right) .
$$

39. We have $\left(D^{2}+2 D\right) y=D(D+2) y$. Let $u=(D+2) y$, and consider the equation $u^{\prime}=3+4 \sin 2 t$. Direct integration results in $u(t)=3 t-2 \cos 2 t+c$. The problem is reduced to solving the ODE $y^{\prime}+2 y=3 t-2 \cos 2 t+c$. The general solution of this first order differential equation is

$$
\begin{aligned}
y(t)= & e^{-2 t} \int_{t_{0}}^{t} e^{2 \tau}[3 \tau-2 \cos 2 \tau+c] d \tau+c_{2} e^{-2 t}= \\
& =\frac{3}{2} t-\frac{1}{2}(\cos 2 t+\sin 2 t)+c_{1}+c_{2} e^{-2 t}
\end{aligned}
$$

