2. The characteristic equation is $9 r^{2}+6 r+1=0$, with the double root $r=-1 / 3$. The general solution is $y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3}$.
3. The characteristic equation is $4 r^{2}-4 r-3=0$, with roots $r=-1 / 2,3 / 2$. The general solution is $y(t)=c_{1} e^{-t / 2}+c_{2} e^{3 t / 2}$.
4. The characteristic equation is $4 r^{2}+12 r+9=0$, with double root $r=-3 / 2$. The general solution is $y(t)=\left(c_{1}+c_{2} t\right) e^{-3 t / 2}$.
5. The characteristic equation is $r^{2}-6 r+9=0$, with the double root $r=3$. The general solution is $y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}$.
6. The characteristic equation is $4 r^{2}+17 r+4=0$, with roots $r=-1 / 4,-4$. The general solution is $y(t)=c_{1} e^{-t / 4}+c_{2} e^{-4 t}$.
7. The characteristic equation is $16 r^{2}+24 r+9=0$, with double root $r=-3 / 4$. The general solution is $y(t)=c_{1} e^{-3 t / 4}+c_{2} t e^{-3 t / 4}$.
8. The characteristic equation is $2 r^{2}+2 r+1=0$. We obtain the complex roots $r=(-1 \pm i) / 2$. The general solution is $y(t)=c_{1} e^{-t / 2} \cos (t / 2)+c_{2} e^{-t / 2} \sin (t / 2)$.
9. The characteristic equation is $9 r^{2}-12 r+4=0$, with the double root $r=2 / 3$. The general solution is $y(t)=c_{1} e^{2 t / 3}+c_{2} t e^{2 t / 3}$. Invoking the first initial condition, it follows that $c_{1}=2$. Now $y^{\prime}(t)=\left(4 / 3+c_{2}\right) e^{2 t / 3}+2 c_{2} t e^{2 t / 3} / 3$. Invoking the second initial condition, $4 / 3+c_{2}=-1$, or $c_{2}=-7 / 3$. Hence we obtain the solution $y(t)=2 e^{2 t / 3}-(7 / 3) t e^{2 t / 3}$. Since the second term dominates for large t, $y(t) \rightarrow-\infty$.

10. The characteristic equation is $9 r^{2}+6 r+82=0$. We obtain the complex roots $r=-1 / 3 \pm 3 i$. The general solution is $y(t)=c_{1} e^{-t / 3} \cos 3 t+c_{2} e^{-t / 3} \sin 3 t$. Based on the first initial condition, $c_{1}=-1$. Invoking the second initial condition, we conclude that $1 / 3+3 c_{2}=2$, or $c_{2}=5 / 9$. Hence $y(t)=-e^{-t / 3} \cos 3 t+$ $(5 / 9) e^{-t / 3} \sin 3 t$. The solution oscillates with an exponentially decreasing amplitude.

11. (a) The characteristic equation is $4 r^{2}+12 r+9=0$, with double root $r=-3 / 2$. The general solution is $y(t)=c_{1} e^{-3 t / 2}+c_{2} t e^{-3 t / 2}$. Invoking the first initial condition, it follows that $c_{1}=1$. Now $y^{\prime}(t)=\left(-3 / 2+c_{2}\right) e^{-3 t / 2}-(3 / 2) c_{2} t e^{-3 t / 2}$. The second initial condition requires that $-3 / 2+c_{2}=-4$, or $c_{2}=-5 / 2$. Hence the specific solution is $y(t)=e^{-3 t / 2}-(5 / 2) t e^{-3 t / 2}$.

(b) The solution crosses the x-axis at $t=2 / 5$.
(c) The solution has a minimum at the point $\left(16 / 15,-5 e^{-8 / 5} / 3\right)$.
(d) Given that $y^{\prime}(0)=b$, we have $-3 / 2+c_{2}=b$, or $c_{2}=b+3 / 2$. Hence the solution is $y(t)=e^{-3 t / 2}+(b+3 / 2) t e^{-3 t / 2}$. Since the second term dominates, the long-term solution depends on the sign of the coefficient $b+3 / 2$. The critical value is $b=-3 / 2$.
12. The characteristic roots are $r_{1}=r_{2}=1 / 2$. Hence the general solution is given by $y(t)=c_{1} e^{t / 2}+c_{2} t e^{t / 2}$. Invoking the initial conditions, we require that $c_{1}=2$, and that $1+c_{2}=b$. The specific solution is $y(t)=2 e^{t / 2}+(b-1) t e^{t / 2}$. Since the second term dominates, the long-term solution depends on the sign of the coefficient $b-1$. The critical value is $b=1$.
18.(a) The characteristic roots are $r_{1}=r_{2}=-2 / 3$. Therefore the general solution is given by $y(t)=c_{1} e^{-2 t / 3}+c_{2} t e^{-2 t / 3}$. Invoking the initial conditions, we require that $c_{1}=a$, and that $-2 a / 3+c_{2}=-1$. After solving for the coefficients, the specific solution is $y(t)=a e^{-2 t / 3}+(2 a / 3-1) t e^{-2 t / 3}$.
(b) Since the second term dominates, the long-term solution depends on the sign of the coefficient $2 a / 3-1$. The critical value is $a=3 / 2$.
20.(a) The characteristic equation is $r^{2}+2 a r+a^{2}=(r+a)^{2}=0$.
(b) With $p(t)=2 a$, Abel's Formula becomes $W\left(y_{1}, y_{2}\right)=c e^{-\int 2 a d t}=c e^{-2 a t}$.
(c) $y_{1}(t)=e^{-a t}$ is a solution. From part (b), with $c=1, e^{-a t} y_{2}^{\prime}(t)+a e^{-a t} y_{2}(t)=$ $e^{-2 a t}$, which can be written as $\left(e^{a t} y_{2}(t)\right)^{\prime}=1$, resulting in $e^{a t} y_{2}(t)=t$.
22.(a) If the characteristic equation $a r^{2}+b r+c$ has equal roots r_{1}, then $a r_{1}^{2}+$ $b r_{1}+c=a\left(r-r_{1}\right)^{2}=0$. Then clearly $L\left[e^{r t}\right]=\left(a r^{2}+b r+c\right) e^{r t}=a\left(r-r_{1}\right)^{2} e^{r t}$. This gives immediately that $L\left[e^{r_{1} t}\right]=0$.
(b) Differentiating the identity in part (a) with respect to r we get $(2 a r+b) e^{r t}+$ $\left(a r^{2}+b r+c\right) t e^{r t}=2 a\left(r-r_{1}\right) e^{r t}+a\left(r-r_{1}\right)^{2} t e^{r t}$. Again, this gives $L\left[t e^{r_{1} t}\right]=0$.
13. Set $y_{2}(t)=t^{2} v(t)$. Substitution into the differential equation results in

$$
t^{2}\left(t^{2} v^{\prime \prime}+4 t v^{\prime}+2 v\right)-4 t\left(t^{2} v^{\prime}+2 t v\right)+6 t^{2} v=0
$$

After collecting terms, we end up with $t^{4} v^{\prime \prime}=0$. Hence $v(t)=c_{1}+c_{2} t$, and thus $y_{2}(t)=c_{1} t^{2}+c_{2} t^{3}$. Setting $c_{1}=0$ and $c_{2}=1$, we obtain $y_{2}(t)=t^{3}$.
24. Set $y_{2}(t)=t v(t)$. Substitution into the differential equation results in

$$
t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0
$$

After collecting terms, we end up with $t^{3} v^{\prime \prime}+4 t^{2} v^{\prime}=0$. This equation is linear in the variable $w=v^{\prime}$. It follows that $v^{\prime}(t)=c t^{-4}$, and $v(t)=c_{1} t^{-3}+c_{2}$. Thus
$y_{2}(t)=c_{1} t^{-2}+c_{2} t$. Setting $c_{1}=1$ and $c_{2}=0$, we obtain $y_{2}(t)=t^{-2}$.
26. Set $y_{2}(t)=t v(t)$. Substitution into the differential equation results in $v^{\prime \prime}-v^{\prime}=$ 0 . This equation is linear in the variable $w=v^{\prime}$. It follows that $v^{\prime}(t)=c_{1} e^{t}$, and $v(t)=c_{1} e^{t}+c_{2}$. Thus $y_{2}(t)=c_{1} t e^{t}+c_{2} t$. Setting $c_{1}=1$ and $c_{2}=0$, we obtain $y_{2}(t)=t e^{t}$.
28. Set $y_{2}(x)=e^{x} v(x)$. Substitution into the differential equation results in $v^{\prime \prime}+$ $(x-2) /(x-1) v^{\prime}=0$. This equation is linear in the variable $w=v^{\prime}$. An integrating factor is $\mu=e^{\int(x-2) /(x-1) d x}=e^{x} /(x-1)$. Rewrite the equation as $\left[e^{x} v^{\prime} /(x-\right.$ $1)]^{\prime}=0$, from which it follows that $v^{\prime}(x)=c(x-1) e^{-x}$. Hence $v(x)=c_{1} x e^{-x}+c_{2}$ and $y_{2}(x)=c_{1} x+c_{2} e^{x}$. Setting $c_{1}=1$ and $c_{2}=0$, we obtain $y_{2}(x)=x$.
29. Set $y_{2}(x)=y_{1}(x) v(x)$, in which $y_{1}(x)=x^{1 / 4} e^{2 \sqrt{x}}$. It can be verified that y_{1} is a solution of the differential equation, that is, $x^{2} y_{1}^{\prime \prime}-(x-0.1875) y_{1}=0$. Substitution of the given form of y_{2} results in the differential equation $2 x^{9 / 4} v^{\prime \prime}+\left(4 x^{7 / 4}+\right.$ $\left.x^{5 / 4}\right) v^{\prime}=0$. This equation is linear in the variable $w=v^{\prime}$. An integrating factor is $\mu=e^{\int\left[2 x^{-1 / 2}+1 /(2 x)\right] d x}=\sqrt{x} e^{4 \sqrt{x}}$. Rewrite the equation as $\left[\sqrt{x} e^{4 \sqrt{x}} v^{\prime}\right]^{\prime}=0$, from which it follows that $v^{\prime}(x)=c e^{-4 \sqrt{x}} / \sqrt{x}$. Integrating, $v(x)=c_{1} e^{-4 \sqrt{x}}+c_{2}$ and as a result, $y_{2}(x)=c_{1} x^{1 / 4} e^{-2 \sqrt{x}}+c_{2} x^{1 / 4} e^{2 \sqrt{x}}$. Setting $c_{1}=1$ and $c_{2}=0$, we obtain $y_{2}(x)=x^{1 / 4} e^{-2 \sqrt{x}}$.
31. Direct substitution verifies that $y_{1}(t)=e^{-\delta x^{2} / 2}$ is a solution of the differential equation. Now set $y_{2}(x)=y_{1}(x) v(x)$. Substitution of y_{2} into the equation results in $v^{\prime \prime}-\delta x v^{\prime}=0$. This equation is linear in the variable $w=v^{\prime}$. An integrating factor is $\mu=e^{-\delta x^{2} / 2}$. Rewrite the equation as $\left[e^{-\delta x^{2} / 2} v^{\prime}\right]^{\prime}=0$, from which it follows that $v^{\prime}(x)=c_{1} e^{\delta x^{2} / 2}$. Integrating, we obtain

$$
v(x)=c_{1} \int_{0}^{x} e^{\delta u^{2} / 2} d u+v(0)
$$

Hence

$$
y_{2}(x)=c_{1} e^{-\delta x^{2} / 2} \int_{0}^{x} e^{\delta u^{2} / 2} d u+c_{2} e^{-\delta x^{2} / 2}
$$

Setting $c_{2}=0$, we obtain a second independent solution.
33. After writing the differential equation in standard form, we have $p(t)=3 / t$. Based on Abel's identity, $W\left(y_{1}, y_{2}\right)=c_{1} e^{-\int 3 / t d t}=c_{1} t^{-3}$. As shown in Problem 32 , two solutions of a second order linear equation satisfy $\left(y_{2} / y_{1}\right)^{\prime}=W\left(y_{1}, y_{2}\right) / y_{1}^{2}$. In the given problem, $y_{1}(t)=t^{-1}$. Hence $\left(t y_{2}\right)^{\prime}=c_{1} t^{-1}$. Integrating both sides of the equation, $y_{2}(t)=c_{1} t^{-1} \ln t+c_{2} t^{-1}$. Setting $c_{1}=1$ and $c_{2}=0$ we obtain $y_{2}(t)=t^{-1} \ln t$.
35. After writing the differential equation in standard form, we have $p(x)=$ $-x /(x-1)$. Based on Abel's identity, $W\left(y_{1}, y_{2}\right)=c e^{\int x /(x-1) d x}=c e^{x}(x-1)$. Two solutions of a second order linear equation satisfy $\left(y_{2} / y_{1}\right)^{\prime}=W\left(y_{1}, y_{2}\right) / y_{1}^{2}$. In the given problem, $y_{1}(x)=e^{x}$. Hence $\left(e^{-x} y_{2}\right)^{\prime}=c e^{-x}(x-1)$. Integrating both
sides of the equation, $y_{2}(x)=c_{1} x+c_{2} e^{x}$. Setting $c_{1}=1$ and $c_{2}=0$, we obtain $y_{2}(x)=x$.
36. Write the differential equation in standard form to find $p(x)=1 / x$. Based on Abel's identity, $W\left(y_{1}, y_{2}\right)=c e^{-\int 1 / x d x}=c x^{-1}$. Two solutions of a second order linear differential equation satisfy $\left(y_{2} / y_{1}\right)^{\prime}=W\left(y_{1}, y_{2}\right) / y_{1}^{2}$. In the given problem, $y_{1}(x)=x^{-1 / 2} \sin x$. Hence

$$
\left(\frac{\sqrt{x}}{\sin x} y_{2}\right)^{\prime}=c \frac{1}{\sin ^{2} x}
$$

Integrating both sides of the equation, $y_{2}(x)=c_{1} x^{-1 / 2} \cos x+c_{2} x^{-1 / 2} \sin x$. Setting $c_{1}=1$ and $c_{2}=0$, we obtain $y_{2}(x)=x^{-1 / 2} \cos x$.
38.(a) The characteristic equation is $a r^{2}+c=0$. If $a, c>0$, then the roots are $r= \pm i \sqrt{c / a}$. The general solution is

$$
y(t)=c_{1} \cos \sqrt{\frac{c}{a}} t+c_{2} \sin \sqrt{\frac{c}{a}} t
$$

which is bounded.
(b) The characteristic equation is $a r^{2}+b r=0$. The roots are $r=0,-b / a$, and hence the general solution is $y(t)=c_{1}+c_{2} e^{-b t / a}$. Clearly, $y(t) \rightarrow c_{1}$. With the given initial conditions, $c_{1}=y_{0}+(a / b) y_{0}^{\prime}$.
39. Note that $2 \cos t \sin t=\sin 2 t$. Then $1-k \cos t \sin t=1-(k / 2) \sin 2 t$. Now if $0<k<2$, then $(k / 2) \sin 2 t<|\sin 2 t|$ and $-(k / 2) \sin 2 t>-|\sin 2 t|$. Hence

$$
1-k \cos t \sin t=1-\frac{k}{2} \sin 2 t>1-|\sin 2 t| \geq 0
$$

40. The equation transforms into $y^{\prime \prime}-4 y^{\prime}+4 y=0$. We obtain a double root $r=2$. The solution is $y=c_{1} e^{2 x}+c_{2} x e^{2 x}=c_{1} e^{2 \ln t}+c_{2} \ln t e^{2 \ln t}=c_{1} t^{2}+c_{2} t^{2} \ln t$.
41. The equation transforms into $y^{\prime \prime}-7 y^{\prime} / 2+5 y / 2=0$. The characteristic roots are $r=1,5 / 2$, so the solution is $y=c_{1} e^{x}+c_{2} e^{5 x / 2}=c_{1} e^{\ln t}+c_{2} e^{5 \ln t / 2}=c_{1} t+$ $c_{2} t^{5 / 2}$.
42. The equation transforms into $y^{\prime \prime}+2 y^{\prime}+y=0$. We get a double root $r=-1$. The solution is $y=c_{1} e^{-x}+c_{2} x e^{-x}=c_{1} e^{-\ln t}+c_{2} \ln t e^{-\ln t}=c_{1} t^{-1}+c_{2} t^{-1} \ln t$.
43. The equation transforms into $y^{\prime \prime}-3 y^{\prime}+9 y / 4=0$. We obtain the double root $r=3 / 2$. The solution is $y=c_{1} e^{3 x / 2}+c_{2} x e^{3 x / 2}=c_{1} e^{3 \ln t / 2}+c_{2} \ln t e^{3 \ln t / 2}=$ $c_{1} t^{3 / 2}+c_{2} t^{3 / 2} \ln t$.
