3.2
1.

$$
W\left(e^{2 t}, e^{-3 t / 2}\right)=\left|\begin{array}{cc}
e^{2 t} & e^{-3 t / 2} \\
2 e^{2 t} & -\frac{3}{2} e^{-3 t / 2}
\end{array}\right|=-\frac{7}{2} e^{t / 2} .
$$

3.

$$
W\left(e^{-2 t}, t e^{-2 t}\right)=\left|\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & (1-2 t) e^{-2 t}
\end{array}\right|=e^{-4 t} .
$$

5.

$$
W\left(e^{t} \sin t, e^{t} \cos t\right)=\left|\begin{array}{cc}
e^{t} \sin t & e^{t} \cos t \\
e^{t}(\sin t+\cos t) & e^{t}(\cos t-\sin t)
\end{array}\right|=-e^{2 t} .
$$

6.

$$
W\left(\cos ^{2} \theta, 1+\cos 2 \theta\right)=\left|\begin{array}{cc}
\cos ^{2} \theta & 1+\cos 2 \theta \\
-2 \sin \theta \cos \theta & -2 \sin 2 \theta
\end{array}\right|=0
$$

7. Write the equation as $y^{\prime \prime}+(3 / t) y^{\prime}=1 . p(t)=3 / t$ is continuous for all $t>0$. Since $t_{0}>0$, the IVP has a unique solution for all $t>0$.
8. Write the equation as $y^{\prime \prime}+(3 /(t-4)) y^{\prime}+(4 / t(t-4)) y=2 / t(t-4)$. The coefficients are not continuous at $t=0$ and $t=4$. Since $t_{0} \in(0,4)$, the largest interval is $0<t<4$.
9. The coefficient $3 \ln |t|$ is discontinuous at $t=0$. Since $t_{0}>0$, the largest interval of existence is $0<t<\infty$.
10. Write the equation as $y^{\prime \prime}+(x /(x-3)) y^{\prime}+(\ln |x| /(x-3)) y=0$. The coefficients are discontinuous at $x=0$ and $x=3$. Since $x_{0} \in(0,3)$, the largest interval is $0<x<3$.
11. $y_{1}^{\prime \prime}=2$. We see that $t^{2}(2)-2\left(t^{2}\right)=0$. $y_{2}^{\prime \prime}=2 t^{-3}$, with $t^{2}\left(y_{2}^{\prime \prime}\right)-2\left(y_{2}\right)=0$. Let $y_{3}=c_{1} t^{2}+c_{2} t^{-1}$, then $y_{3}^{\prime \prime}=2 c_{1}+2 c_{2} t^{-3}$. It is evident that y_{3} is also a solution.
12. No. Substituting $y=\sin \left(t^{2}\right)$ into the differential equation,

$$
-4 t^{2} \sin \left(t^{2}\right)+2 \cos \left(t^{2}\right)+2 t \cos \left(t^{2}\right) p(t)+\sin \left(t^{2}\right) q(t)=0
$$

At $t=0$, this equation becomes $2=0$ (if we suppose that $p(t)$ and $q(t)$ are continuous), which is impossible.
17. $W\left(e^{2 t}, g(t)\right)=e^{2 t} g^{\prime}(t)-2 e^{2 t} g(t)=3 e^{4 t}$. Dividing both sides by $e^{2 t}$, we find that g must satisfy the ODE $g^{\prime}-2 g=3 e^{2 t}$. Hence $g(t)=3 t e^{2 t}+c e^{2 t}$.
19. $W(f, g)=f g^{\prime}-f^{\prime} g$. Also, $W(u, v)=W(2 f-g, f+2 g)$. Upon evaluation, $W(u, v)=5 f g^{\prime}-5 f^{\prime} g=5 W(f, g)$.
20. $W(f, g)=f g^{\prime}-f^{\prime} g=t \cos t-\sin t$, and $W(u, v)=-4 f g^{\prime}+4 f^{\prime} g$. Hence $W(u, v)=-4 t \cos t+4 \sin t$.
21. We compute

$$
\begin{gathered}
W\left(a_{1} y_{1}+a_{2} y_{2}, b_{1} y_{1}+b_{2} y_{2}\right)=\left|\begin{array}{ll}
a_{1} y_{1}+a_{2} y_{2} & b_{1} y_{1}+b_{2} y_{2} \\
a_{1} y_{1}^{\prime}+a_{2} y_{2}^{\prime} & b_{1} y_{1}^{\prime}+b_{2} y_{2}^{\prime}
\end{array}\right|= \\
=\left(a_{1} y_{1}+a_{2} y_{2}\right)\left(b_{1} y_{1}^{\prime}+b_{2} y_{2}^{\prime}\right)-\left(b_{1} y_{1}+b_{2} y_{2}\right)\left(a_{1} y_{1}^{\prime}+a_{2} y_{2}^{\prime}\right)= \\
=a_{1} b_{2}\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)-a_{2} b_{1}\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)=\left(a_{1} b_{2}-a_{2} b_{1}\right) W\left(y_{1}, y_{2}\right) .
\end{gathered}
$$

This now readily shows that y_{3} and y_{4} form a fundamental set of solutions if and only if $a_{1} b_{2}-a_{2} b_{1} \neq 0$.
23. The general solution is $y=c_{1} e^{-3 t}+c_{2} e^{-t}$. $W\left(e^{-3 t}, e^{-t}\right)=2 e^{-4 t}$, and hence the exponentials form a fundamental set of solutions. On the other hand, the fundamental solutions must also satisfy the conditions $y_{1}(1)=1, y_{1}^{\prime}(1)=0 ; y_{2}(1)=0$, $y_{2}^{\prime}(1)=1$. For y_{1}, the initial conditions require $c_{1}+c_{2}=e,-3 c_{1}-c_{2}=0$. The
coefficients are $c_{1}=-e^{3} / 2, c_{2}=3 e / 2$. For the solution y_{2}, the initial conditions require $c_{1}+c_{2}=0,-3 c_{1}-c_{2}=e$. The coefficients are $c_{1}=-e^{3} / 2, c_{2}=e / 2$. Hence the fundamental solutions are

$$
y_{1}=-\frac{1}{2} e^{-3(t-1)}+\frac{3}{2} e^{-(t-1)} \quad \text { and } \quad y_{2}=-\frac{1}{2} e^{-3(t-1)}+\frac{1}{2} e^{-(t-1)} .
$$

24. Yes. $y_{1}^{\prime \prime}=-4 \cos 2 t ; y_{2}^{\prime \prime}=-4 \sin 2 t . W(\cos 2 t, \sin 2 t)=2$.
25. Clearly, $y_{1}=e^{t}$ is a solution. $y_{2}^{\prime}=(1+t) e^{t}, y_{2}^{\prime \prime}=(2+t) e^{t}$. Substitution into the ODE results in $(2+t) e^{t}-2(1+t) e^{t}+t e^{t}=0$. Furthermore, $W\left(e^{t}, t e^{t}\right)=e^{2 t}$. Hence the solutions form a fundamental set of solutions.
26. Clearly, $y_{1}=x$ is a solution. $y_{2}^{\prime}=\cos x, y_{2}^{\prime \prime}=-\sin x$. Substitution into the ODE results in $(1-x \cot x)(-\sin x)-x(\cos x)+\sin x=0$. We can compute that $W\left(y_{1}, y_{2}\right)=x \cos x-\sin x$, which is nonzero for $0<x<\pi$. Hence $\{x, \sin x\}$ is a fundamental set of solutions.
27. Writing the equation in standard form, we find that $P(t)=\sin t / \cos t$. Hence the Wronskian is $W(t)=c e^{-\int(\sin t / \cos t) d t}=c e^{\ln |\cos t|}=c \cos t$, in which c is some constant.
28. After writing the equation in standard form, we have $P(x)=1 / x$. The Wronskian is $W(x)=c e^{-\int(1 / x) d x}=c e^{-\ln |x|}=c / x$, in which c is some constant.
29. Writing the equation in standard form, we find that $P(x)=-2 x /\left(1-x^{2}\right)$. The Wronskian is $W(x)=c e^{-\int-2 x /\left(1-x^{2}\right) d x}=c e^{-\ln \left|1-x^{2}\right|}=c /\left(1-x^{2}\right)$, in which c is some constant.
30. Rewrite the equation as $p(t) y^{\prime \prime}+p^{\prime}(t) y^{\prime}+q(t) y=0$. After writing the equation in standard form, we have $P(t)=p^{\prime}(t) / p(t)$. Hence the Wronskian is

$$
W(t)=c e^{-\int p^{\prime}(t) / p(t) d t}=c e^{-\ln p(t)}=c / p(t) .
$$

35. The Wronskian associated with the solutions of the differential equation is given by $W(t)=c e^{-\int-2 / t^{2} d t}=c e^{-2 / t}$. Since $W(2)=3$, it follows that for the hypothesized set of solutions, $c=3 e$. Hence $W(4)=3 \sqrt{e}$.
36. For the given differential equation, the Wronskian satisfies the first order differential equation $W^{\prime}+p(t) W=0$. Given that W is constant, it is necessary that $p(t) \equiv 0$.
37. Direct calculation shows that $W(f g, f h)=(f g)(f h)^{\prime}-(f g)^{\prime}(f h)=(f g)\left(f^{\prime} h+\right.$ $\left.f h^{\prime}\right)-\left(f^{\prime} g+f g^{\prime}\right)(f h)=f^{2} W(g, h)$.
38. Since y_{1} and y_{2} are solutions, they are differentiable. The hypothesis can thus be restated as $y_{1}^{\prime}\left(t_{0}\right)=y_{2}^{\prime}\left(t_{0}\right)=0$ at some point t_{0} in the interval of definition.

This implies that $W\left(y_{1}, y_{2}\right)\left(t_{0}\right)=0$. But $W\left(y_{1}, y_{2}\right)\left(t_{0}\right)=c e^{-\int p(t) d t}$, which cannot be equal to zero, unless $c=0$. Hence $W\left(y_{1}, y_{2}\right) \equiv 0$, which is ruled out for a fundamental set of solutions.
42. $P=1, Q=x, R=1$. We have $P^{\prime \prime}-Q^{\prime}+R=0$. The equation is exact. Note that $\left(y^{\prime}\right)^{\prime}+(x y)^{\prime}=0$. Hence $y^{\prime}+x y=c_{1}$. This equation is linear, with integrating factor $\mu=e^{x^{2} / 2}$. Therefore the general solution is

$$
y(x)=c_{1} e^{-x^{2} / 2} \int_{x_{0}}^{x} e^{u^{2} / 2} d u+c_{2} e^{-x^{2} / 2}
$$

43. $P=1, Q=3 x^{2}, R=x$. Note that $P^{\prime \prime}-Q^{\prime}+R=-5 x$, and therefore the differential equation is not exact.
44. $P=x^{2}, Q=x, R=-1$. We have $P^{\prime \prime}-Q^{\prime}+R=0$. The equation is exact. Write the equation as $\left(x^{2} y^{\prime}\right)^{\prime}-(x y)^{\prime}=0$. After integration, we conclude that $x^{2} y^{\prime}-x y=c$. Divide both sides of the differential equation by x^{2}. The resulting equation is linear, with integrating factor $\mu=1 / x$. Hence $(y / x)^{\prime}=c x^{-3}$. The solution is $y(t)=c_{1} x^{-1}+c_{2} x$.
