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Chapter 3. Second Order Linear Equations

7. Write the equation as y” + (3/t)y’ = 1. p(t) = 3/t is continuous for all ¢ > 0.
Since tg > 0, the IVP has a unique solution for all ¢ > 0.

9. Write the equation as y” + (3/(t —4))y’ + (4/t(t — 4))y = 2/t(t — 4) . The coef-
ficients are not continuous at t = 0 and ¢ = 4. Since ¢y € (0,4), the largest interval
is0<t<4.

10. The coefficient 31In|¢| is discontinuous at ¢t = 0. Since to > 0, the largest
interval of existence is 0 <t < 0.

11. Write the equation as y” + (x/(z — 3))y’ + (In|z| /(x — 3))y = 0. The coeffi-
cients are discontinuous at = 0 and = 3. Since g € (0,3), the largest interval
is0<z<3.

13. y{’ =2. We see that t?(2) —2(t?) = 0. yy’ = 2¢3, with t?(y4') — 2(y2) = 0.
Let y3 = c1t? + cot™1, then w3’ = 2c; + 2cot 3. It is evident that ys is also a
solution.

16. No. Substituting y = sin(#?) into the differential equation,
—4t?sin(t?) + 2 cos(t?) + 2t cos(t*)p(t) + sin(t?)q(t) = 0.
At t = 0, this equation becomes 2 = 0 (if we suppose that p(¢) and ¢(t) are contin-

uous), which is impossible.

17. W(e?, g(t)) = e2'g’(t) — 2e%'g(t) = 3e*. Dividing both sides by €2, we find
that g must satisfy the ODE g’ — 2g = 3e2*. Hence g(t) = 3t €' + ce?’.

19. W(f,9)=fg' — f'g. Also, W(u,v) =W (2f —g, f+2g). Upon evaluation,
W(u,v)=5fg" =5f'g =5W(f,g).

20. W(f,9)=fg —f'g=tcost—sint, and W(u,v)=—4fg’ +4f'g. Hence
W(u,v) = —4t cos t +4sin t.

21. We compute

aryr +agy2 by +boya| _

W (a1y1 + asya,biyr + b =
(11 2Y2, 01Y1 2Y2) ary) + asyh  biy) + bayh

= (a1y1 + a2y2) (bry1 + bays) — (bry1 + baye)(ary] + asys) =
= ar1ba (195 — y1y2) — a2bi (Y195 — y1y2) = (arba — azb) W (y1, y2).
This now readily shows that y3 and y4 form a fundamental set of solutions if and

only if a1b2 — a2b1 7& 0.

23. The general solution is y = c1e™3! + coe™t. W(e 3, e7!) = 2e~*, and hence
the exponentials form a fundamental set of solutions. On the other hand, the fun-
damental solutions must also satisfy the conditions y1(1) =1, y{(1) = 0; y2(1) =0,
y4(1) = 1. For yi, the initial conditions require ¢; +cy = e, —3¢; —ca = 0. The
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coefficients are ¢; = —e®/2, co = 3e¢/2. For the solution ys, the initial conditions re-
quire ¢; + ¢ = 0, —3c; — co = e. The coefficients are ¢; = —e3/2, co = ¢/2. Hence

the fundamental solutions are

1 3 1 1
vy = _56—3@—1) n 56—(t—1) and gy — _56—3@—1) n 56—(15—1).

24. Yes. y{' = —4 cos 2t; y5' = —4 sin 2t. W (cos 2t,sin 2¢) = 2.

25. Clearly, y; = €' is a solution. y4 = (1 + t) , Y3’ = (2 + t)e!. Substitution into
the ODE results in (2 + t)e! — 2(1 +t)e! + tet = 0. Furthermore, W (e!, tet) = e2t.
Hence the solutions form a fundamental set of solutions.

27. Clearly, y; = z is a solution. yg = cos =, y;’ = —sin z. Substitution into the
ODE results in (1 — z cot z)(—sin x) — z(cos x) + sin = 0. We can compute that
W (y1,y2) = x cos x — sin x, which is nonzero for 0 < x < 7. Hence {z,sin z} is a
fundamental set of solutions.

30. Writing the equation in standard form, we find that P(¢) = sin ¢/ cos ¢t. Hence
the Wronskian is W (t) = ce=J(int/cost)dt — celnlcos t] — ¢ o5 ¢ in which ¢ is
some constant.

31. After writing the equation in standard form, we have P(z) = 1/x. The Wron-
skian is W (z) = ce=J(/2)dv — ce=Mlzl = ¢/2 in which ¢ is some constant.

32. Writing the equation in standard form, we find that P(z) = —2z/(1 — 2?).
The Wronskian is W (z) = ce~J ~22/(1=a?) dz _ cem == = ¢/(1 — 2?), in which
c is some constant.

33. Rewrite the equation as p(t)y” + p’(t)y’ + q(t)y = 0. After writing the equa-
tion in standard form, we have P(t) = p’(t)/p(t) . Hence the Wronskian is

W(t) = ce [P O/PWdt — o= p(t) — ¢ /p) .

35. The Wronskian associgted with the solutions of the differential equation is
given by W (t) = ce™J =2/t°dt — ce=2/t Since W(2) = 3, it follows that for the
hypothesized set of solutions, ¢ = 3e. Hence W (4) = 3 /e .

36. For the given differential equation, the Wronskian satisfies the first order dif-
ferential equation W'+ p(t)W = 0. Given that W is constant, it is necessary that

p(t) =0.

37. Direct calculation shows that W (fg,fh)=(fa)(fh) — (fg)(fh) = (fg)(f'h+
0 = (f'g+ fg")(fh) = [*W(g,h).

39. Since y; and ys are solutions, they are differentiable. The hypothesis can thus
be restated as y{(to) = y4(tg) =0 at some point ¢y in the interval of definition.
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This implies that W (y1 ,y2)(to) = 0. But W(y1,y2)(to) = ce™ /P which can-
not be equal to zero, unless ¢ = 0. Hence W (y; ,y2) = 0, which is ruled out for a
fundamental set of solutions.

42, P=1,Q=z, R=1. We have P/ — Q'+ R=0. The equation is exact.
Note that (y’)’ + (xy)’ =0. Hence y’+ xy = c¢;. This equation is linear, with
z2/2

integrating factor u = e . Therefore the general solution is

y(z) = cleﬂg/Q / w2y + 0267‘”2/2.

Zo

43. P=1, Q =322, R=2x. Note that P — Q'+ R = —b5z, and therefore the
differential equation is not exact.

45. P=2% Q =2, R=—1. We have P” — Q'+ R =0. The equation is exact.
Write the equation as (22y’) — (vy)’ = 0. After integration, we conclude that
2%y’ — 2y = c. Divide both sides of the differential equation by z2. The resulting
equation is linear, with integrating factor p = 1/x. Hence (y/z) =cxz~3. The
solution is y(t) = ciz™! + cox .
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