
This equation can be rewritten as

2v

v2 − 1
dv =

dx

x

which has solution ln |v2 − 1| = ln |x| + c. Applying the exponential function, we have
v2 − 1 = C|x|. Rewriting back in terms of y, we have c|x|3 = (y2 − x2)

(c)
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Section 2.3

1. Let Q(t) be the quantity of dye in the tank. We know that

dQ

dt
= rate in − rate out.

Here, fresh water is flowing in. Therefore, no dye is coming in. The dye is flowing out at the
rate of (Q/200)g/l · 2l/min = Q/100 l/min. Therefore,

dQ

dt
= − Q

100
.

The solution of this equation is Q(t) = Ce−t/100. Since Q(0) = 200 grams, C = 200. We
need to find the time T when the amount of dye present is 1% of what it is initially. That
is, we need to find the time T when Q(T ) = 2 grams. Solving the equation 2 = 200e−t/100,
we conclude that T = 100 ln(100) minutes.

2. Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.

Here, water containing γ g/liter of salt is flowing in at a rate of 2 liters/minute. The salt is
flowing out at the rate of (Q/120)g/l · 2l/min = Q/60 l/min. Therefore,

dQ

dt
= 2γ − Q

60
.
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The solution of this equation is Q(t) = 120γ + Ce−t/60. Since Q(0) = 0 grams, C = −120γ.
Therefore, Q(t) = 120γ[1− e−t/60]. As t →∞, Q(t) → 120γ.

3. Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.

Here, water containing 1/2 lb/gallon of salt is flowing in at a rate of 2 gal/minute. The salt
is flowing out at the rate of (Q/100)lb/gal · 2gal/min = Q/50 gal/min. Therefore,

dQ

dt
= 1− Q

50
.

The solution of this equation is Q(t) = 50 + Ce−t/50. Since Q(0) = 0 grams, C = −50.
Therefore, Q(t) = 50[1 − e−t/50] for 0 ≤ t ≤ 10 minutes. After 10 minutes, the amount of
salt in the tank is Q(10) = 50[1− e−1/5] ≈ 9.06 lbs. Starting at that time (and resetting the
time variable), the new equation for dQ/dt is given by

dQ

dt
= −Q

50
,

since fresh water is being added. The solution of this equation is Q(t) = Ce−t/50. Since we
are now starting with 9.06 lbs of salt, Q(0) = 9.06 = C. Therefore, Q(t) = 9.06e−t/50. After
10 minutes, Q(10) = 9.06e−1/5 ∼= 7.42 lbs.

4. Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.

Here, water containing 1 lb/gallon of salt is flowing in at a rate of 3 gal/minute. The salt is
flowing out at the rate of (Q/(200 + t))lb/gal · 2gal/min = 2Q/(200 + t) lb/min. Therefore,

dQ

dt
= 3− 2Q

200 + t
.

This is a linear equation with integrating factor µ(t) = (200 + t)2. The solution of this
equation is Q(t) = 200 + t + C(200 + t)−2. Since Q(0) = 100 lbs, C = −4, 000, 000.
Therefore, Q(t) = 200 + t− 4, 000, 000/(200 + t)2. Since the tank has a net gain of 1 gallon
of water every minute, the tank will reach its capacity after 300 minutes. When t = 300, we
see that Q(300) = 484 lbs. Therefore, the concentration of salt when it is on the point of
overflowing is 121/125 lbs/gallon. The concentration of salt is given by Q(t)/(200+ t) (since
t gallons of water are added every t minutes). Using the equation for Q above, we see that
if the tank had infinite capacity, the concentration would approach 1 as t →∞.

5.

(a) Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.
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Here, water containing
1

4

(
1 +

1

2
sin t

)
oz/gallon of salt is flowing in at a rate of 2

gal/minute. The salt is flowing out at the rate of Q/100oz/gal · 2gal/min = Q/50
oz/min. Therefore,

dQ

dt
=

1

2
+

1

4
sin t− Q

50
.

This is a linear equation with integrating factor µ(t) = et/50. The solution of this equation
is Q(t) = (12.5 sin t−625 cos t+63150e−t/50)/2501+C. The initial condition, Q(0) = 50
oz implies C = 25. Therefore, Q(t) = 25 + (12.5 sin t− 625 cos t + 63150e−t/50)/2501.

(b)

0
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50
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20 40 60 80 100 120 140
t

(c) The amount of salt approaches a steady state, which is an oscillation of amplitude 1/4
about a level of 25 oz.

6.

(a) Using the Principle of Conservation of Energy, we know that the kinetic energy of a
particle after it has fallen from a height h is equal to its potential energy at a height t.
Therefore, mv2/2 = mgh. Solving this equation for v, we have v =

√
2gh.

(b) The volumetric outflow rate is (outflow cross-sectional area)× (outflow velocity): αa
√

2gh.
The volume of water in the tank is

V (h) =

∫ h

0

A(u) du

where A(u) is the cross-sectional area of the tank at height u. By the chain rule,

dV

dt
=

dV

dh
· dh

dt
= A(h)

dh

dt
.

Therefore,
dV

dt
= A(h)

dh

dt
= −αa

√
2gh.
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(c) The cross-sectional area of the cylinder is A(h) = π(1)2 = π. The outflow cross-sectional
area is a = π(.1)2 = .01π. From part (a), we take α = 0.6 for water. Then by part (b),
we have

π
dh

dt
= −0.006π

√
2gh.

This is a separable equation with solution h(t) = 0.000018gt2 − 0.006
√

2gh(0)t + h(0).
Setting h(0) = 3 and g = 9.8, we have h(t) = 0.0001764t2 − 0.046t + 3. Then h(t) = 0
implies t ≈ 130.4 seconds.

7.

(a) The equation for S is
dS

dt
= rS

with an initial condition S(0) = S0. The solution of the equation is S(t) = S0e
rt. We

want to find the time T such that S(T ) = 2S0. Our equation becomes 2S0 = S0e
rT .

Dividing by S0 and applying the logarithmic function to our equation, we have rT =
ln(2). That is, T = ln(2)/r.

(b) If r = .07, then T = ln(2)/.07 ∼= 9.90 years.

(c) By part (a), we also know that r = ln(2)T where T is the doubling time. If we want the
investment to double in T = 8 years, then we need r = ln(2)/8 ∼= 8.66%.

8.

(a) The equation for S is given by
dS

dt
= rS + k.

This is a linear equation with solution S(t) =
k

r
[ert − 1].

(b) Using the function in part (a), we need to find k so that S(40) = 1, 000, 000 assuming
r = .075. That is, we need to solve

1, 000, 000 =
k

.075
[e.075·40 − 1].

The solution of this equation is k ∼= 3930.

(c) Now we assume that k = 2000 and want to find r. Our equation becomes

1, 000, 000 =
2000

r
[e40r − 1].

The solution of this equation is approximately 9.77%.

9.
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(a) Let S(t) be the balance due on the loan at time t. To determine the maximum amount
the buyer can afford to borrow, we will assume that the buyer will pay $800 per month.
Then

dS

dt
= .09S − 12(800).

The solution is given by equation (18), S(t) = S0e
.09t− 106, 667(e.09t− 1). If the term of

the mortgage is 20 years, then S(20) = 0. Therefore, 0 = S0e
.09(20)−106, 667(e.09(20)−1)

which implies S0 ≈ $89, 035.

(b) Since the homeowner pays $800 per month for 20 years, he ends up paying a total of
$192, 000 for the house. Since the house loan was $89, 035, the rest of the amount was
interest payments. Therefore, the amount of interest was approximately $102, 965.

10.

(a) Let S(t) be the balance due on the loan at time t. Taking into account that t is measured
in years, we rewrite the monthly payment as 800(1 + t/10) where t is now in years. The
equation for S is given by

dS

dt
= .09S − 12(800)(1 + t/10).

This is a linear equation. Its solution is S(t) = 225185 + 10667t + ce.09t. The initial
condition S(0) = 100, 000 implies c = −125185. Therefore, the particular solution is
S(t) = 225185 + 10667t− 125185e.09t. To find when the loan will be paid, we just need
to solve S(t) = 0. Solving this equation, we conclude that the loan will be paid off in
11.28 years (135.36 months).

(b) From part (a), we know the general solution is given by S(t) = 225185 + 10667t + ce.09t.
Now we want to find c such that S(20) = 0. The solution of this equation is c = −72486.
Therefore, the solution of the equation will be S(t) = 225185 + 10667 − 72846e.09t.
Therefore, S(0) = 225185− 72846 = 152699.

11.

(a) If S0 is the initial balance, then the balance after one month is

S1 = initial balance + interest - monthly payment

= S0 + rS0 − k.

Similarly,

S2 = S1 + rS1 − k

= (1 + r)S1 − k.

In general,
Sn = (1 + r)Sn−1 − k.
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(b) R = 1 + r implies Sn = RSn−1 − k. Therefore,

S1 = RS0 − k

S2 = RS1 − k = R[RS0 − k]− k = R2S0 − (R + 1)k

S3 = RS2 − k = R[R2S0 − (R + 1)k]− k = R3S0 − (R2 + R + 1)k.

(c) We check the base case, n = 1. We see that

S1 = RS0 − k = RS0 −
(

R− 1

R− 1

)
k,

which implies that that the condition is satisfied for n = 1. We assume that

Sn = RnS0 − Rn − 1

R− 1
k

to show that

Sn+1 = Rn+1S0 − Rn+1 − 1

R− 1
k.

We see that

Sn+1 = RSn − k

= R

[
RnS0 − Rn − 1

R− 1
k

]
− k

= Rn+1S0 −
(

Rn+1 −R

R− 1

)
k − k

= Rn+1S0 −
(

Rn+1 −R

R− 1

)
k −

(
R− 1

R− 1

)
k

= Rn+1S0 −
(

Rn+1 −R + R− 1

R− 1

)
k

= Rn+1S0 −
(

Rn+1 − 1

R− 1

)
k.

(d) We are assuming that S0 = 20, 000 and r = .08/12. We need to find k such that S48 = 0.
Our equation becomes

S48 = R48S0 −
(

R48 − 1

R− 1

)
k = 0.

Therefore, (
(1 + .08/12)48 − 1

.08/12

)
k =

(
1 +

.08

12

)48

· 20, 000,

which implies k ≈ 488.26, which is very close to the result in example 2.

12.
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(a) The general solution is Q(t) = Q0e
−rt. If the half-life is 5730, then Q0/2 = Q0e

−5730r

implies −5730r = ln(1/2). Therefore, r = 1.2097× 10−4 per year.

(b) Therefore, Q(t) = Q0e
−1.2097×10−4t.

(c) Given that Q(T ) = Q0/5, we have the equation 1/5 = e−1.2097×10−4T . Solving for T , we
have T = 13, 304.65 years.

13. Let P (t) be the population of mosquitoes at any time t, measured in days. Then

dP

dt
= rP − 20, 000.

The solution of this linear equation is P (t) = P0e
rt − 20,000

r
(ert − 1). In the absence of

predators, the equation is dP1/dt = rP1. The solution of this equation is P1(t) = P0e
rt.

Since the population doubles after 7 days, we see that 2P0 = P0e
7r. Therefore, r = ln(2)/7 =

.09902 per day. Therefore, the population of mosquitoes at any time t is given by P (t) =
200, 000e.099t − 201, 997(e.099t − 1) = 201, 997− 1997e.099t.

14.

(a) The solution of this separable equation is given by y(t) = exp[2/10+ t/10− 2 cos(t)/10].
The doubling-time is found by solving the equation 2 = exp[2/10 + t/10− 2 cos(t)/10].
The solution of this equation is given by τ ≈ 2.9632.

(b) The differential equation will be dy/dt = y/10 with solution y(t) = y(0)et/10. The
doubling time is found by setting y(t) = 2y(0). In this case, the doubling time is
τ ≈ 6.9315.

(c) Consider the differential equation dy/dt = (0.5+sin(2πt))y/5. This equation is separable
with solution y(t) = exp[(1+πt−cos(2πt))/(10π)]. The doubling time is found by setting
y(t) = 2. The solution is given by 6.9167.

(d)
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15.
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(a)
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(b) Based on the graph, we estimate that yc ≈ 0.83.

(c) We sketch the graphs below for k = 1/10 and k = 3/10, respectively. Based on these
graphs, we estimate that yc(1/10) ≈ .41 and yc(3/10) ≈ 1.24.
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(d) From our results from above, we conclude that yc is a linear function of k.
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16. Let T (t) be the temperature of the coffee at time t. The governing equation is given by

dT

dt
= −k(T − 70).

This is a linear equation with solution T (t) = 70 + ce−kt. The initial condition T (0) = 200
implies c = 130. Therefore, T (t) = 70 + 130e−kt. Using the fact that T (1) = 190, we see
that 190 = 70 + 130e−k which implies k = − ln(12/13) ∼= .08 per minute. To find when the
temperature reaches 150 degrees, we just need to solve T (t) = 70 + 130e−0.08t = 150. The
solution of this equation is t = − ln(80/130)/.08 ∼= 6.07 minutes.

17.

(a) The solution of this separable equation is given by

u3 =
u3

0

3αu3
0t + 1

.

Since u0 = 2000, the specific solution is

u(t) =
2000

(6t/125 + 1)1/3
.

(b)
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(c) We look for τ so that u(τ) = 600. The solution of this equation is t ≈ 750.77 seconds.

18.

(a) The integrating factor is µ(t) = ekt. Then u = e−kt
∫

kekt(T0 + T1 cos(ωt)) = ce−kt +
T0 + kT1(k cos ωt+ω sin ωt)/(k2 +ω2). Since e−kt → 0 as t →∞, we see that the steady
state is S(t) = T0 + kT1(k cos(ωt) + ω sin(ωt))/(k2 + ω2).

(b)
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The amplitude R of the oscillatory part of S(t) is approximately 9 degrees Fahrenheit.
The time lag τ between maxima is approximately 3.5 seconds.

(c) From above, the oscillatory part of S(t) is given by

kT1
k cos(ωt) + ω sin(ωt)

k2 + ω2
=

kT1√
k2 + ω2

(cos(ωt) cos(ωτ) + sin(ωt) sin(ωτ)

for τ such that cos(ωτ) = k/
√

k2 + ω2 and sin(ωτ) = ω/
√

k2 + ω2. That is, τ =
1
ω

arctan(ω/k). Further, letting R = kT1/
√

k2 + ω2, we can write the oscillatory part of
S(t) as

R[cos(ωt) cos(ωτ) + sin(ωt) sin(ωτ)] = R cos(ω(t− τ)).

Below we show graphs of R and τ versus k.
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19.

(a) The differential equation for Q is

dQ

dt
= kr + P − Q(t)

V
r.

Therefore,

V
dc

dt
= kr + P − c(t)r.

The solution of this equation is c(t) = k + P/r + (c0 − k − P/r)e−rt/V . As t → ∞,
c(t) → k + P/r.

(b) In this case, we will have c(t) = c0e
−rt/V . The reduction times are T50 = ln(2)V/r and

T10 = ln(10)V/r.

(c) Using the results from part (b), we have: Superior, T = 431 years; Michigan, T = 71.4
years; Erie, T = 6.05 years; Ontario, T = 17.6 years.

20.

(a) Assuming no air resistance, we have dv/dt = −9.8. Therefore, v(t) = −9.8t + v0 =
−9.8t + 20 and its position at time t is given by s(t) = −4.9t2 + 20t + 30. When the
ball reaches its max height, the velocity will be zero. We see that v(t) = 0 implies
t = 20/9.8 ∼= 2.04 seconds. When t = 2.04, we see that s(2.04) ∼= 50.4 meters.

(b) Solving s(t) = −4.9t2 + 20t + 30 = 0, we see that t = 5.248 seconds.

(c)
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21.

(a) We have mdv/dt = −v/30 − mg. Given the conditions from problem 20, we see that
the solution is given by v(t) = −44.1 + 64.1e−t/4.5. The ball will reach its max height
when v(t) = 0. This occurs at t = 1.683 seconds. The height of the ball is given by
s(t) = −318.45−44.1t−288.45e−t/4.5. When t = 1.683, we have s(1.683) = 45.78 meters,
the maximum height.

(b) The ball will hit the ground when s(t) = 0. This occurs when t = 5.128 seconds.

(c)
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22.

(a) The equation for the upward motion is mdv/dt = −µv2 −mg where µ = 1/1325. Using
the data from exercise 20, and the fact that this equation is separable, we see its solution
is given by v(t) = 44.133 tan(.425− .222t). Setting v(t) = 0, we see the ball will reach its
max height at t = 1.916 seconds. Integrating v(t), we see the position at time t is given
by s(t) = 198.75 ln(cos(0.222t − 0.425)) + 48.57. Therefore, the max height is given by
s(1.916) = 48.56 meters.

(b) The differential equation for the downward motion is mdv/dt = +µv2−mg. The solution
of this equation is given by v(T ) = 44.13(1 − et/2.25)/(1 + et/2.25). Integrating v(t), we
see that the position is given by s(t) = 99.29 ln(et/2.25/(1 + et/2.25)2) + 186.2. Setting
s(t) = 0, we see that the ball will spend t = 3.276 seconds going downward before hitting
the ground. Combining this time with the amount of time the ball spends going upward,
1.916 seconds, we conclude that the ball will hit the ground 5.192 seconds after being
thrown upward.

(c)
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23.

(a) Measure the positive direction of motion downward. Then the equation of motion is
given by

m
dv

dt
=

{ −0.75v + mg 0 < t < 10
−12v + mg t > 10.

For the first 10 seconds, the equation becomes dv/dt = −v/7.5 + 32 which has solution
v(t) = 240(1− e−t/7.5). Therefore, v(10) = 176.7 feet per second.

(b) Integrating the velocity function from part (a), we see that the height of the skydiver at
time t (0 < t < 10) is given by s(t) = 240t+1800e−t/7.5−1800. Therefore, s(10) = 1074.5
feet.

(c) After the parachute opens, the equation for v is given by dv/dt = −32v/15 + 32 (as
discussed in part (a)). We will reset t to zero. The solution of this differential equation
is given by v(t) = 15 + 161.7e−32t/15. As t → ∞, v(t) → 15. Therefore, the limiting
velocity is vl = 15 feet/second.

(d) Integrating the velocity function from part (c), we see that the height of the sky diver
after falling t seconds with his parachute open is given by s(t) = 15t − 75.8e−32t/15 +
1150.3. To find how long the skydiver is in the air after the parachute opens, we find T
such that s(T ) = 0. Solving this equation, we have T = 256.6 seconds.

(e)
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24.

(a) The equation of motion is given by dv/dx = −µv.

(b) The speed of the sled satisfies ln(v/v0) = −µx. Therefore, µ must satisfy ln(15/150) =
−2000µ. Therefore, µ = ln(10)/2000 f−1.

(c) The solution of dv/dt = −µv2 can be expressed as 1/v − 1/v0 = µt. Using the fact that
1 mi/hour ≈ 1.467 feet/second, the elapsed time is t ≈ 35.56 seconds.

25.

(a) Measure the positive direction of motion upward. The equation of motion is given by
mdv/dt = −kv − mg. The solution of this equation is given by v(t) = −mg/k +
(v0 + mg/k)e−kt/m. Solving v(t) = 0, we see that the mass will reach its max height
tm = (m/k) ln[(mg + kv0)/mg] seconds after being projected upward. Integrating the
velocity equation, we see that the position of the mass at this time will be given by the
position equation

s(t) = −mgt/k +

[(m

k

)2

g +
mv0

k

]
(1− e−kt/m).

Therefore, the max height reached is

xm = s(tm) =
mv0

k
− g

(m

k

)2

ln

[
mg + kv0

mg

]
.

,

(b) These formulas for tm and xm come from the fact that for δ << 1, ln(1 + δ) = δ− 1
2
δ2 +

1
3
δ3 − 1

4
δ4 + . . .. This formula is just Taylor’s formula.

(c) Consider the result for tm in part (b). Multiplying the equation by g
v0

, we have

tmg

v0

=

[
1− 1

2

kv0

mg
+

1

3

(
kv0

mg

)2

− . . .

]
.

The units on the left, must match the units on the right. Since the units for tmg/v0 =
(s ·m/s2)/(m/s), the units cancel. As a result, we can conclude that kv0/mg is dimen-
sionless.

26.

(a) The equation of motion is given by mdv/dt = −kv −mg. The solution of this equation
is given by v(t) = −mg/k + (v0 + mg/k)e−kt/m.

(b) Applying L’Hospital’s rule, as k → 0, we have

lim
k→0

−mg/k + (v0 + mg/k)e−kt/m = v0 − gt.
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(c)
lim
m→0

−mg/k + (v0 + mg/k)e−kt/m = 0.

27.

(a) The equation of motion is given by

m
dv

dt
= −6πµav + ρ′

4

3
πa3g − ρ

4

3
πa3g.

We can rewrite this equation as

v′ +
6πµa

m
v =

4

3

πa3g

m
(ρ′ − ρ).

Multiplying by the integrating factor e6πµat/m, we have

(e6πµat/mv)′ =
4

3

πa3g

m
(ρ′ − ρ)e6πµat/m.

Integrating this equation, we have

v = e−6πµat/m

[
2a2g(ρ′ − ρ)

9µ
e6πµat/m + C

]

=
2a2g(ρ′ − ρ)

9µ
+ Ce−6πµat/m.

Therefore, we conclude that the limiting velocity is vL = (2a2g(ρ′ − ρ))/9µ.

(b) By the equation above, we see that the force exerted on the droplet of oil is given by

Ee = −6πµav + ρ′
4

3
πa3g − ρ

4

3
πa3g.

If v = 0, then solving the above equation for e, we have

e =
4πa3g(ρ′ − ρ)

3E
.

28.

(a) The equation is given by mdv/dt = −kv −mg. The solution of this equation is v(t) =
−(mg/k)(1 − e−kt/m). Integrating, we see that the position function is given by x(t) =
−(mg/k)t + (m/k)2g(1 − e−kt/m) + 30. First, by setting x(t) = 0, we see that the ball
will hit the ground t = 3.63 seconds after it is dropped. Then v(3.63) = 11.58 m/second
will be the speed when the mass hits the ground.
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(b) In terms of displacement, we have mvdv/dx = −kv + mg. This equation comes from
applying the chain rule: dv/dt = dv/dx·dx/dt = vdv/dx. The solution of this differential
equation is given by

x(v) = −mv

k
− m2g

k2
ln

∣∣∣∣
mg − kv

mg

∣∣∣∣ .

Plugging in the given values for k, m, g, we have x(v) = −1.25v − 15.31 ln |0.0816v − 1|.
If v = 10, then x(10) = 13.45 meters.

(c) Using the equation for x(v) above, we set x(v) = 30, v = 10, m = 0.25, g = 9.8. Then
solving for k, we have k = 0.24.

29.

(a) The equation of motion is given by mdv/dt = −GMm/(R + x)2. By the chain rule,

m
dv

dx
· dx

dt
= −G

Mm

(R + x)2
.

Therefore,

mv
dv

dx
= −G

Mm

(R + x)2
.

This equation is separable with solution v2 = 2GM(R +x)−1 +2gR− 2GM/R. Here we
have used the initial condition v0 =

√
2gR. From physics, we know that g = GM/R2.

Using this substitution, we conclude that v(x) =
√

2g[R/
√

R + x].

(b) By part (a), we know that dx/dt = v(x) =
√

2g[R/
√

R + x]. We want to solve this
differential equation with the initial condition x(0) = 0. This equation is separable
with solution x(t) = [3

2
(
√

2gRt + 2
3
R3/2]2/3 − R. We want to find the time T such that

x(T ) = 240, 000. Solving this equation, we conclude that T ≈ 50.6 hours.

30.

(a) dv/dt = 0 implies v is constant, but clearly by the initial condition v = u cos A. dw/dt =
−g implies w = −gt + C, but also by the initial condition w = −gt + u sin A.

(b) The equation dx/dt = v = u cos A along with the initial condition implies x(t) = u cos At.
The equation dy/dt = w = −gt + u sin A along with the initial condition implies y(t) =
−gt2/2 + u sin At + h.

(c) Below we have plotted the trajectory of the ball in the cases π/4, π/3 and π/6 respec-
tively.
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(d) First, let T be the time it takes for the ball to travel L feet horizontally. Using the
equation for x, we know that x(T ) = u cos AT = L implies T = L/u cos A. Then,
when the ball reaches this wall, we need the height of the ball to be at least H feet.
That is, we need y(T ) ≥ H. Now y(t) = −16t2 + u sin At + 3 implies we need y(T ) =
−16L2/(u2 cos2(A)) + L tan A + 3 ≥ H.

(e) If L = 350 and H = 10, then our inequality becomes

− 1, 960, 000

(u2 cos2(A))
+ 350 tan A + 3 ≥ 10.
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Now if u = 110, then our inequality becomes

− 162

cos2(A)
+ 350 tan(A) ≥ 7.

Solving this inequality, we conclude that 0.63 rad ≤ A ≤ 0.96 rad.

(f) We rewrite the inequality in part (c) as

cos2(A)(350 tan A− 7) ≥ 1, 960, 000

u2
.

In order to determine the minimum value necessary, we will maximize the function
on the left-hand side. Letting f(A) = cos2(A)(350 tan A − 7), we see that f ′(A) =
350 cos(2A)+7 sin(2A). Therefore, f ′(A) = 0 implies tan(2A) = −50. For 0 < A < π/2,
we see that this occurs at A = 0.7954 radians. Substituting this value for A into the
inequality above, we conclude that

u2 ≥ 11426.24.

Therefore, the minimum velocity necessary is 106.89 mph and the optimal angle neces-
sary is 0.7954 radians.

31.

(a) The initial conditions are v(0) = u cos(A) and w(0) = u sin(A). Therefore, the solutions
of the two equations are v(t) = u cos(A)e−rt and w(t) = −g/r + (u sin(A) + g/r)e−rt.

(b) Now x(t) =
∫

v(t) = u
r
cos(A)(1− e−rt), and

y(t) =

∫
w(t) = −gt

r
+

(g + ur sin(A) + hr2)

r2
−

(u

r
sin(A) +

g

r2

)
e−rt.

(c) Below we show trajectories for the cases A = π/4, π/3 and π/6, respectively.
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(d) Let T be the time it takes the ball to go 350 feet horizontally. Then from above, we see
that e−T/5 = (u cos(A)− 70)/u cos(A). At the same time, the height of the ball is given
by y(T ) = −160T + 267 + 125u sin(A) − (800 + 5u sin(A))[(u cos(A) − 70)/u cos(A)].
Therefore, u and A must satisfy the inequality

800 ln

[
u cos(A)− 70

u cos(A)

]
+ 267 + 125u sin(A)− (800 + 5u sin(A))

[
u cos(A)− 70

u cos(A)

]
≥ 10.

32.

(a) Solving equation (i), we have y′(x) = [(k2−y)/y]1/2. The positive answer is chosen since
y is an increasing function of x.

(b) y = k2 sin2 t =⇒ dy/dt = 2k2 sin t cos t. Substituting this into the equation in part (a),
we have

2k2 sin t cos tdt

dx
=

cos t

sin t
.

Therefore, 2k2 sin2 tdt = dx.

(c) Letting θ = 2t, we have k2 sin2(θ/2)dθ = dx. Integrating both sides, we have x(θ) =
k2(θ − sin θ)/2. Further, using the fact that y = k2 sin2 t, we conclude that y =
k2 sin2(θ/2) = k2(1− cos(θ))/2.
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(d) From part (c), we see that y/x = (1− cos θ)/(θ− sin θ). If x = 1 and y = 2, the solution
of the equation is θ ≈ 1.401. Substituting that value of θ into either of the equations in
part (c), we conclude that k ≈ 2.193.

Section 2.4

1. Rewriting the equation as

y′ +
ln t

t− 3
y =

2t

t− 3

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0 < t < 3.

2. Rewriting the equation as

y′ +
1

t(t− 4)
y = 0

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0 < t < 4.

3. By Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
π/2 < t < 3π/2.

4. Rewriting the equation as

y′ +
2t

4− t2
y =

3t2

4− t2

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
−∞ < t < −2.

5. Rewriting the equation as

y′ +
2t

4− t2
y =

3t2

4− t2

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
−2 < t < 2.

6. Rewriting the equation as

y′ +
1

lnt
y =

cot t

lnt

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
1 < t < π.

7. Using the fact that

f =
t− y

2t + 5y
=⇒ fy =

3t− 10y

(2t + 5y)2
,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as 2t + 5y 6= 0.

8. Using the fact that

f = (1− t2 − y2)1/2 =⇒ fy = − y

(1− t2 − y2)1/2
,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as t2 + y2 < 1.
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