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C H A P T E R

2

First Order Differential Equations

2.1

1.(a)

(b) All solutions seem to approach a line in the region where the negative and
positive slopes meet each other.

(c) µ(t) = e
∫
3 dt = e3t. Thus e3t(y′ + 3y) = e3t(t+ e−2t) or (ye3t)′ = te3t + et. In-

tegration of both sides yields ye3t = te3t/3− e3t/9 + et + c, where integration by
parts is used on the right side, with u = t and dv = e3tdt. Division by e3t gives
y(t) = ce−3t + t/3− 1/9, so y approaches t/3− 1/9 as t→∞. This is the line
identified in part (b).
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2.(a)

(b) All solutions eventually have positive slopes, and hence increase without bound.

(c) The integrating factor is µ(t) = e−2t, and hence y(t) = t3e2t/3 + c e2t. It is
evident that all solutions increase at an exponential rate.

3.(a)

(b) All solutions seem to converge to the function y0(t) = 1 .

(c) The integrating factor is µ(t) = et, and hence y(t) = t2e−t/2 + 1 + c e−t. It is
clear that all solutions converge to the specific solution y0(t) = 1 .
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4.(a)

(b) Based on the direction field, the solutions eventually become oscillatory.

(c) The integrating factor is µ(t) = e
∫
(1/t) dt = eln t = t , so (ty)′ = 3t cos 2t, and

integration by parts yields the general solution y(t) = (3/4t) cos 2t+ (3/2) sin 2t+
c/t, in which c is an arbitrary constant. As t becomes large, all solutions converge
to the function y1(t) = 3(sin 2t)/2.

6.(a)

(b) All solutions seem to converge to the function y0(t) = 0.

(c) The equation must be divided by t so that it is in the form of Eq.(3): y′ +
(2/t)y = sin t/t. Thus µ(t) = e

∫
(2/t) dt = t2 , and (t2y)′ = t sin t. Integration then

yields t2y = −t cos t+ sin t+ c, hence the general solution is y(t) = −(cos t)/t+
(sin t)/t2 + c/t2, in which c is an arbitrary constant (t > 0). As t becomes large,
all solutions converge to the function y0(t) = 0.
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7.(a)

(b) All solutions seem to converge to the function y0(t) = 0 .

(c) The integrating factor is µ(t) = et
2

, and hence y(t) = t2e−t
2

+ c e−t
2

. It is clear
that all solutions converge to the function y0(t) = 0 .

8.(a)

(b) All solutions seem to converge to the function y0(t) = 0 .

(c) Since µ(t) = e
∫
4t/(1+t2) dt = (1 + t2)2, after integration we obtain the general

solution y(t) = (arctan t+ c)/(1 + t2)2. It follows that all solutions converge to the
function y0(t) = 0 .
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11.(a)

(b) The solutions appear to be oscillatory.

(c) The integrating factor is µ(t) = et, so (ety)′ = 5et sin 2t. To integrate the right
side we can integrate by parts (twice), use an integral table or use a symbolic
computational software to find y(t) = sin 2t− 2 cos 2t+ c e−t. It is evident that all
solutions converge to the specific solution y0(t) = sin 2t− 2 cos 2t.

13. µ(t) = e−t, so (e−ty)′ = 2tet and thus e−ty = 2
∫
tet dt+ c = 2(tet −

∫
et dt) +

c = 2(tet − et) + c. Thus y(t) = 2(t− 1)e2t + cet, so setting t = 0 we have 1 = −2 +
c, or c = 3. Hence y(t) = 2(t− 1)e2t + 3et.

15. µ(t) = e
∫
(2/t) dt = t2 so that (t2y)′ = t3 − t2 + t. Integrating and dividing by

t2 gives y = t2/4− t/3 + 1/2 + c/t2. Setting t = 1 and y = 1/2 we have c = 1/12.

18. µ(t) = t2. Thus (t2y)′ = t sin t and t2y = −t cos t+ sin t+ c. Setting t = π/2
and y = 1 yields c = π2/4− 1.

20. µ(t) = e
∫
(t+1)/t dt = e1+ln t = tet.

21.(a)

The solutions appear to diverge from an apparent oscillatory solution. From the
direction field, the critical value of the initial condition seems to be a0 = −1 . For
a > −1 , the solutions increase without bound. For a < −1 , solutions decrease
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without bound.

(b) The integrating factor is µ(t) = e−t/2, so (e−t/2y)′ = 2e−t/2 cos t. Integrating
(see comments in Problem 11) and dividing by e−t/2 yields the general solution
y(t) = (8 sin t− 4 cos t)/5 + c et/2. Thus y(0) = −4/5 + c = a, or c = a+ 4/5 and
y(t) = −4 cos t/5 + 8 sin t/5 + (a+ 4/5)et/2.

(c) If a+ 4/5 = 0, then the solution is oscillatory for all t, while if a+ 4/5 6= 0, the
solution is unbounded as t→∞. Thus a0 = −4/5.

25.(a)

As t → 0 , solutions increase without bound if y(−π/2) = a > 0.4 , and solutions
decrease without bound if y(−π/2) = a < 0.4 .

(b) µ(t) = e
∫
(2/t) dt = t2, so (t2y)′ = sin t and y(t) = − cos t/t2 + c/t2. Setting t =

−π/2 yields 4c/π2 = a or c = aπ2/4 and hence y(t) = (a π2/4− cos t)/t2, which is
unbounded as t→ 0 unless aπ2/4 = 1. Since limt→0 cos t = 1 , solutions increase
without bound if a > 4/π2, and solutions decrease without bound if a < 4/π2.
Hence the critical value is a0 = 4/π2 ≈ 0.452847.

(c) For a0 = 4/π2, the solution is y(t) = (1− cos t)/t2 , and using L’Hospital’s rule
twice we obtain limt→0 y(t) = 1/2 . Hence the solution is bounded.

26.(a)
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(b) µ(t) = e
∫
cos t/ sin t dt = eln sin t = sin t and thus (y sin t)′ = et. Hence y sin t =

et + c or y = (et + c)/ sin t. Setting t = 1 and y = a we get c = a sin 1− e so y(t) =
(et − e+ a sin 1)/ sin t. If y(t) is to remain finite as t→ 0 the numerator, et − e+
a sin 1, must approach 0 as t→ 0 and hence a0 = (e− 1)/ sin 1.

(c) Using a0 we have y(t) = (et − 1)/ sin t, which approaches 1 as t→ 0, using
L’Hospital’s rule.

30. (e−ty)′ = e−t + 3e−t sin t so e−ty = −e−t − 3e−t(sin t+ cos t)/2 + c or y(t) =
−1− 3(sin t+ cos t)/2 + cet. Thus y(0) = −1− 3/2 + c = y0 or c = y0 + 5/2. Now,
if y(t) is to remain bounded as t→∞, we must have c = 0 so that y0 = −5/2.

32. Write the first term of Eq.(47) as (
∫ t
0
es

2/4 ds)/et
2/4. In applying L’Hospital’s

rule, the derivative of the numerator term is et
2/4 by the Fundamental Theorem

of Calculus. The derivative of the denominator is (t/2)et
2/4 and thus the limit of

both terms in Eq.(47) is 0 as t→∞.

33. µ(t) = eat so the differential equation can be written as (eaty)′ = beate−λt =
be(a−λ)t. If a 6= λ, then integration and solution for y yields y = [b/(a− λ)]e−λt +
ce−at. Then limt→∞ y is zero since both λ and a are positive numbers. If a = λ,
then the differential equation becomes (eaty)′ = b, which yields y = (bt+ c)e−λt as
the solution. L’Hospital’s rule gives

lim
t→∞

y = lim
t→∞

bt+ c

eλt
= lim
t→∞

b

λeλt
= 0.

35. There is no unique answer for this situation. One possible answer is to assume
y(t) = ce−2t + 3− t (which satisfies the given condition), then y′(t) = −2ce−2t − 1.
Eliminating ce−2t between the two equations yields y′ + 2y = 5− 2t.

39. By Eq.(iii), Problem 38, y(t) = A(t)e−
∫
(−2) dt = A(t)e2t. Differentiating y(t)

and substituting into the differential equation yields A′(t) = t2 since the terms
involving A(t) add to zero. Thus A(t) = t3/3 + c, which substituted into y(t) yields
the solution.

42. Since p(t) = 1/2, y(t) = A(t)e−
∫
(1/2) dt = A(t)e−t/2 and A′(t) = (3/2)t2et/2.

Integration of A′(t) and substituting in y(t) yields the desired solution.

2.2

Problems 1 through 20 follow the pattern of the examples worked in this section.
The first eight problems, however, do not have an initial condition, so the integra-
tion constant c cannot be found.

1. Write the equation in the form ydy = x2dx. Integrating the left side with respect
to y and the right side with respect to x yields y2/2 = x3/3 + C, or 3y2 − 2x3 = c.
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4. For y 6= −3/2 multiply both sides of the equation by 3 + 2y to get the separated
equation (3 + 2y)dy = (3x2 − 1)dx. Integration then yields 3y + y2 = x3 − x+ c.

6. We need x 6= 0 and |y| < 1 for this problem to be defined. Separating the
variables we get (1− y2)−1/2 dy = x−1 dx. Integrating each side yields arcsin y =
ln |x|+ c, so y = sin(ln |x|+ c), x 6= 0 (note that |y| < 1). Also, y = ±1 satisfy the
differential equation, since both sides are zero.

10.(a) Separating the variables we get ydy = (1− 2x)dx, so y2/2 = x− x2 + c.
Setting x = 1 and y = −2 we have c = 2 and thus y2 = 2x− 2x2 + 4 or y(x) =
−
√

2x− 2x2 + 4 . The negative square root must be used since y(1) = −2.

(b)

(c) Rewriting y(x) as y(x) = −
√

2(2− x)(x+ 1), we see that y is defined for −1 ≤
x ≤ 2. However, since y′ does not exist for x = −1 or x = 2, the solution is valid
only for the open interval −1 < x < 2. The interval of existence is (−1, 2).

13.(a) Separate variables by factoring the denominator of the right side to get
ydy = 2x/(1 + x2) dx. Integration yields y2/2 = ln(1 + x2) + c and use of the initial
condition gives c = 2. Thus y = ±

√
2 ln(1 + x2) + 4, but we must discard the plus

square root because of the initial condition. Since 1 + x2 > 0, the solution is valid
for all x.
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(b)

15.(a) Separating variables and integrating yields y + y2 = x2 + c. Setting y = 0
when x = 2 yields c = −4 or y2 + y = x2 − 4. To solve for y complete the square
on the left side by adding 1/4 to both sides. This yields y2 + y + 1/4 = x2 − 4 + 1/4
or (y + 1/2)2 = x2 − 15/4. Taking the square root of both sides yields y + 1/2 =
±
√
x2 − 15/4, where the positive square root must be taken in order to satisfy the

initial condition. Thus y(x) = −1/2 +
√
x2 − 15/4 , which is defined for x2 ≥ 15/4

or x ≥
√

15/2.

(b)

17.(a) Separating variables gives (2y − 5)dy = (3x2 − ex)dx and integration then
gives y2 − 5y = x3 − ex + c. Setting x = 0 and y = 1 we have 1− 5 = 0− 1 + c,
or c = −3 and thus y2 − 5y − (x3 − ex − 3) = 0. Using the quadratic formula then
gives y(x) = 5/2−

√
x3 − ex + 13/4 , where the negative square root is chosen so

that y(0) = 1.
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(b)

(c) The solution is valid for approximately −1.45 < x < 4.63. These values are
found by estimating the roots of 4x3 − 4ex + 13 = 0.

19.(a) We start with cos 3y dy = − sin 2x dx and integrate to get (1/3) sin 3y =
(1/2) cos 2x+ c. Setting y = π/3 when x = π/2 (from the initial condition) we
find that 0 = −1/2 + c or c = 1/2, so that (1/3) sin 3y = (1/2) cos 2x+ 1/2 = cos2 x
(using the appropriate trigonometric identity). To solve for y we must choose the
branch that passes through the point (π/2, π/3), so y(x) = (π − arcsin(3 cos2 x))/3.

(b)

(c) The solution in part (a) is defined only for 0 ≤ 3 cos2 x ≤ 1, or −
√

1/3 ≤ cosx ≤√
1/3. Taking the indicated square roots and then finding the inverse cosine of each

side yields 0.9553 ≤ x ≤ 2.1863, or |x− π/2| ≤ 0.6155, as the appropriate interval.

21. We have (3y2 − 6y)dy = (1 + 3x2)dx so that y3 − 3y2 = x+ x3 − 2, once the
initial condition is used. From the differential equation, the integral curve will have
a vertical tangent when 3y2 − 6y = 0, or y = 0, 2. For y = 0 we have x3 + x− 2 =
0, which is satisfied for x = 1, which is the only zero of the function w = x3 + x− 2.
Likewise, for y = 2, x = −1. Thus the solution is valid on |x| < 1.

23. Separating variables gives y−2 dy = (2 + x)dx, and after integration we get
−y−1 = 2x+ x2/2 + c. y(0) = 1 yields c = −1, and thus y = 2/(2− 4x− x2). This
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implies that y′(x) = (8 + 4x)/(2− 4x− x2)2, so the minimum value is attained at
x = −2. Note that the solution is defined for −2−

√
6 < x < −2 +

√
6 (by finding

the zeros of the denominator) and has vertical asymptotes at the endpoints of the
interval.

25. Separating variables and integrating yields 3y + y2 = sin 2x+ c. y(0) = −1
gives c = −2 so that y2 + 3y + 2− sin 2x = 0. The quadratic formula, along with
the initial condition then gives y = −3/2 +

√
sin 2x+ 1/4, which is defined for

−0.126 < x < 1.697 (found by solving sin 2x = −1/4 for x and noting x = 0 is the
initial point). Thus we have y′ = cos 2x/

√
sin 2x+ 1/4, which yields x = π/4 as

the only critical point in the above interval. Using the second derivative test or
graphing the solution indicates the critical point is a maximum.

27.(a) By sketching the direction field or by using the differential equation we note
that y′ < 0 for y > 4 and y′ approaches zero as y approaches 4. For 0 < y < 4,
y′ > 0 and again approaches 0 as y approaches 4. Thus limt→∞ y = 4 if y0 > 0. For
y0 < 0, y′ < 0 for all y and hence y becomes negatively unbounded as t increases.
If y0 = 0, then y′ = 0 for all t, so y = 0 for all t.

(b) Separating variables and using a partial fraction expansion we obtain that
(1/y − 1/(y − 4)) dy = (4/3)t dt. Hence ln |y/(y − 4)| = 2t2/3 + c1, and therefore

|y/(y − 4)| = ec1e2t
2/3 = ce2t

2/3, where c is positive. For y(0) = y0 = 0.5, this gives
us the equation |0.5/(0.5− 4)| = c and thus c = 1/7. Using this value for c and

solving for y yields y(t) = 4/(1 + 7e−2t
2/3). Setting this equal to 3.98 and solving

for t yields t = 3.29527.

29. Separating variables yields (cy + d)/(ay + b) dy = dx. If a 6= 0 and ay + b 6=
0 then dx = (c/a+ (ad− bc)/(a(ay + b)) dy. Integration then yields the desired
answer.

30.(a) Divide the numerator and denominator by x 6= 0.

(b) If v = y/x, then y = vx and dy/dx = v + xdv/dx.

(c) The differential equation becomes v + xdv/dx = (v − 4)/(1− v). Subtracting v
from both sides yields xdv/dx = (v2 − 4)/(1− v).

(d) The last equation in part (c) separates into (1− v)/(v2 − 4)dv = (1/x)dx. To
integrate the left side use partial fractions to write (1− v)/(v2 − 4) = A/(v − 2) +
B/(v + 2), which yields A = −1/4 and B = −3/4. Integrating both sides gives
−(1/4) ln |v − 2| − (3/4) ln |v + 2| = ln |x| − k, or ln |x4||v − 2||v + 2|3 = 4k after ma-
nipulations using properties of the logarithmic function. Thus x4|v − 2||v + 2|3 = c.

(e) Recalling that v = y/x gives the desired solution.
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(f)

31.(a) Simplifying the right side of the differential equation gives dy/dx = 1 +
(y/x) + (y/x)2 so the equation is homogeneous.

(b) y = vx gives y′ = v + xv′, so substitution leads to the equation v + xv′ = 1 +
v + v2 or (1/(1 + v2)) dv = (1/x) dx. Integrating, we get arctan v = ln |x|+ c and
substituting for v we obtain arctan(y/x)− ln |x| = c.

(c) The integral curves are symmetric with respect to the origin.

33.(a) Observe that (4y − 3x)/(2x− y) = (4(y/x)− 3)/(2− y/x). Hence the dif-
ferential equation is homogeneous.

(b) Substituting y = vx we get v + xv′ = (4v − 3)/(2− v) which can be rewritten
as xv′ = (v2 + 2v − 3)/(2− v). Note that v = −3 and v = 1 are solutions of this
equation. For v 6= 1, −3 separating variables gives (2− v)/((v + 3)(v − 1)) dv =
(1/x) dx. Applying a partial fraction decomposition to the left side we obtain
(1/(4(v − 1))− 5/(4(v + 3))) dv = (1/x) dx, and upon integrating both sides we
find that (1/4) ln |v − 1| − (5/4) ln |v + 3| = ln |x|+ c. Substituting for v and per-
forming some algebraic manipulations we get the solution in the implicit form
|y − x| = c|y + 3x|5. v = 1 and v = −3 yield y = x and y = −3x, respectively, as
solutions also.
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(c) The integral curves are symmetric with respect to the origin.

35.(a) Observe that (x+ 3y)/(x− y) = (1 + 3(y/x))/(1− y/x). Hence the differ-
ential equation is homogeneous.

(b) Let y = vx; we get v + xv′ = (1 + 3v)/(1− v), so xv′ = (v + 1)2/(1− v). Note
that v = −1 (or y = −x) satisfies the differential equation. Separating variables
yields ((1− v)/(v + 1)2) dv = (1/x) dx. Integrating the left side by parts (by let-
ting let u = 1− v and dw = dv/(v + 1)2) we get the equation (v − 1)/(v + 1)−
ln |v + 1| = ln |x|+ c. Letting v = y/x we obtain the equation (y − x)/(y + x)−
ln |(y + x)/x| = ln |x|+ c, or (y − x)/(y + x)− ln |y + x| = c. The answer in the
text can be obtained by integrating the left side above using partial fractions. By
differentiating both answers it can be verified that indeed both forms satisfy the
differential equation.

(c) The integral curves are symmetric with respect to the origin.

2.3

2. Let S(t) be the amount of salt that is present at any time t, then S(0) = 0 is the
original amount of salt in the tank, 2γ is the amount of salt entering per minute,
and 2(S/120) is the amount of salt leaving per minute (all amounts measured in
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grams). Thus dS/dt = 2γ − 2S/120, S(0) = 0. This is a linear equation, which has
et/60 as its integrating factor. Thus the general solution is S(t) = 120γ + ce−t/60.
S(0) = 0 gives c = −120γ, so S(t) = 120γ(1− e−t/60) and hence S(t)→ 120γ grams
as t→∞.

3. We must first find the amount of salt that is present after 10 minutes. For
the first 10 minutes (if we let Q(t) be the amount of salt in the tank): dQ/dt =
(1/2)(2)− 2Q(t)/100, Q(0) = 0. This is a linear equation which has the solution
Q(t) = 50(1− e−t/50), as in problem 2, and thus Q(10) = 50(1− e−0.2) = 9.063 lbs
of salt in the tank after the first 10 minutes. At this point no more salt is allowed to
enter, so the new initial value problem (letting P (t) be the amount of salt in the tank
after the first 10 minutes) is dP/dt = (0)(2)− 2P (t)/100, P (0) = Q(10) = 9.063.
The solution of this problem is P (t) = 9.063e−0.02t, which yields P (10) = 7.42 lbs.

4. Salt flows out of the tank at the rate of (Q(t)/(200 + t))(2) lb/min, since the
volume of water in the tank at any time t is 200 + (1)(t) gallons (due to the fact that
water flows into the tank faster than it flows out). Thus the initial value problem
is dQ/dt = (3)(1)− 2Q(t)/(200 + t), Q(0) = 100, which is a linear equation with
(200 + t)2 as its integrating factor.

8.(a) Set S0 = 0 in Eq.(16) (or solve Eq.(15) with S(0) = 0).

(b) Set r = 0.075, t = 40 and S(t) = $1, 000, 000 in the answer to part (a) and then
solve for k.

(c) Set k = $2, 000, t = 40 and S(t) = $1, 000, 000 in the answer to part (a) and
then solve numerically for r.

9. Let S(t) be the amount of the loan remaining at time t, then dS/dt = 0.1S −
k, S(0) = $8, 000. Solving this for S(t) yields S(t) = 8000e0.1t − 10k(e0.1t − 1).
Setting S = 0 and substitution of t = 3 gives k = $3, 086.64 per year. For 3 years
this totals $9, 259.92, so $1, 259.92 has been paid in interest.

10. Since we are assuming continuity, either convert the monthly payment into an
annual payment or convert the yearly interest rate into a monthly interest rate for
240 (or 360) months. Then proceed as in Problem 9.

11.(a) The monthly interest rate is 0.5%. Then dS/dt = 0.005S − k, S(0) = 250, 000.
The solution of this linear equation is S(t) = 250, 000e0.005t + 200k(1− e0.005t). For
20 years, we need S(240) = 0, and we obtain k = $1788.77. For 30 years, we need
that S(360) = 0 and we obtain k = $1497.54.

(b) The total interest paid in the 20 year case is $179, 305, in the 30 year case is
$289, 114.

14.(a) We have (1/y)dy = (0.1 + 0.2 sin t)dt, by separating variables, and thus y(t) =
ce0.1t−0.2 cos t. y(0) = 1 gives c = e0.2, so y(t) = e0.2+0.1t−0.2 cos t. Setting y = 2
yields ln 2 = 0.2 + 0.1τ − 0.2 cos τ , which can be solved numerically to give τ =
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2.9632. If y(0) = y0 then as above, y(t) = y0e
0.2+0.1t−0.2 cos t. Thus if we set y = 2y0

we get the same numerical equation for τ and hence the doubling time has not
changed.

(b) The differential equation is dy/dt = y/10 , with solution y(t) = y(0)et/10. The
doubling time is given by τ = 10 ln 2 ≈ 6.9315.

(c) Consider the differential equation dy/dt = (0.5 + sin(2πt)) y/5 . The equation is
separable, with (1/y)dy = (0.1 + 1

5 sin(2πt))dt . Integrating both sides, with respect
to the appropriate variable, we obtain ln y = (πt− cos(2πt))/10π + c . Invoking
the initial condition, the solution is y(t) = e(1+πt−cos(2πt))/10π. The doubling-time
is τ ≈ 6.3804 . The doubling time approaches the value found in part (b).

(d)

16. If T is the temperature of the coffee at any time t, then dT/dt = −k(T − 70),
T (0) = 200, T (1) = 190. The solution of this linear equation will involve k (the
cooling rate) and the integration constant c. Use T (0) = 200 to find c and then use
T (1) = 190 to evaluate k.

18.(a) Eq.(i) is a linear equation with the integrating factor ekt. Thus (ektu)′ =
k(T0 + T1 cosωt)ekt and hence ektu = T0e

kt + kT1
∫

cosωtekt dt+ c. Evaluating
the integral (by parts or by a symbolic software package) and dividing by ekt yields
u(t) = T0 + kT1(k cosωt+ ω sinωt)/(k2 + ω2) + ce−kt. Note that the last term ap-
proaches zero as t→∞ for any initial condition, and that the rest of the solution
oscillates about u(t) = T0.
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(b) R ≈ 9◦F, τ ≈ 3.5h.

(c) Recall that R cos(ω(t− τ)) = R cosωt cosωτ +R sinωt sinωτ . Comparing this
with the oscillatory portion of the above solution we have R cosωτ = k2T1/(k

2 +
ω2) and R sinωτ = kωT1/(k

2 + ω2) since these are the coefficients of cosωt and
sinωt, respectively. By squaring and adding we find R2 = k2T 2

1 /(k
2 + ω2) and by

dividing we find tanωτ = ω/k.

19.(a) The required differential equation is dQ/dt = kr + P −Q(t)r/V , since kr
is the rate of water pollutant entering the lake, P is the rate of pollutant en-
tering directly and Q(t)r/V is the rate at which the pollutant leaves the lake.
The initial condition is Q(0) = V c0. Since c = Q(t)/V , the initial value problem
may be rewritten as V c′(t) = kr + P − rc, c(0) = c0, which has the solution c(t) =
k + P/r + (c0 − k − P/r)e−rt/V . It is easy to see that limt→∞ c(t) = k + P/r .

(b) c(t) = c0 e
−rt/V . The reduction times are T50 = V ln 2/r and T10 = V ln 10/r.

(c) The reduction times are TS = (12, 200) ln 10/65.2 = 430.85 years; for Lake Michi-
gan, TM = (4, 900) ln 10/158 = 71.4 years; TE = (460) ln 10/175 = 6.05 years; and
TO = (16, 000) ln 10/209 = 17.63 years.

20.(a) If we measure x positively upward from the ground, then Eq.(4) of Sec-
tion 1.1 becomes mdv/dt = −mg, since there is no air resistance. Thus the ini-
tial value problem for v(t) is dv/dt = −g, v(0) = 20, which gives v(t) = 20− gt.
Since dx/dt = v(t) we get x(t) = 20t− (g/2)t2 + c. Then x(0) = 30 gives c = 30
and thus x(t) = 20t− (g/2)t2 + 30. At the maximum height v(tm) = 0 and thus
tm = 20/9.8 = 2.04 sec, which when substituted in the equation for x(t) yields the
maximum height.

(b) The ball hits the ground when x(t) = 0, solving this equation gives t = 5.2 sec.
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(c)

21.(a) The differential equation for the motion is mdv/dt = −v/30−mg . Given
the initial condition v(0) = 20 m/s , the solution is v(t) = −44.1 + 64.1 e−t/4.5 .
Setting v(t1) = 0 , the ball reaches the maximum height at t1 = 1.683 s . Integrat-
ing v(t) , the position is given by x(t) = 318.45− 44.1 t− 288.45 e−t/4.5. Hence the
maximum height is x(t1) = 45.78 m .

(b) Setting x(t2) = 0 , the ball hits the ground at t2 = 5.128 s .

(c)

23.(a) Measure the positive direction of motion downward. Based on Newton’s
second law, the equation of motion is given by

m
dv

dt
=

{
−0.75 v +mg, 0 < t < 10

−12 v +mg, t > 10
.

Note that gravity acts in the positive direction, and the drag force is resistive.
During the first ten seconds of fall, the initial value problem is dv/dt = −v/7.5 + 32,
with initial velocity v(0) = 0 ft/s. This differential equation is separable and linear,
with solution v(t) = 240(1− e−t/7.5). Hence v(10) = 176.7 ft/s.

(b) Integrating the velocity, with x(t) = 0 , the distance fallen is given by x(t) =
240 t+ 1800 e−t/7.5 − 1800. Hence x(10) = 1074.5 ft.

(c) For computational purposes, reset time to t = 0. For the remainder of the
motion, the initial value problem is dv/dt = −32v/15 + 32, with specified initial
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velocity v(0) = 176.7 ft/s. The solution is given by v(t) = 15 + 161.7e−32 t/15. As
t→∞, v(t)→ vL = 15 ft/s.

(d) Integrating the velocity, with x(0) = 1074.5, the distance fallen after the parachute
is open is given by x(t) = 15t− 75.8e−32t/15 + 1150.3. To find the duration of
the second part of the motion, estimate the root of the transcendental equation
15T − 75.8e−32T/15 + 1150.3 = 5000. The result is T = 256.6 s.

(e)

26.(a) As in Problem 21, mdv/dt = −mg − kv, v(0) = v0.

(b) From part (a), v(t) = −mg/k + (v0 +mg/k)e−kt/m. As k → 0, this has the
indeterminate form of −∞+∞. Thus rewrite v(t) as

v(t) = (−mg + (v0k +mg)e−kt/m)/k,

which has the indeterminate form 0/0 as k → 0. Using L’Hospital’s rule,

lim
k→ 0

−mg + (k v0 +mg)e−kt/m

k
= lim
k→ 0

[v0e
−kt/m − t

m
(k v0 +mg)e−kt/m] = v0 − gt.

(c)

lim
m→ 0

[
−mg

k
+ (

mg

k
+ v0)e−kt/m

]
= 0,

since limm→ 0 e
−kt/m = 0 .

27.(a) The equation of motion is m(dv/dt) = w −R−B which, in this problem,
is (4/3)πa3ρ(dv/dt) = (4/3)πa3ρg − 6πµav − (4/3)πa3ρ′g. The limiting velocity
occurs when dv/dt = 0.

(b) Since the droplet is motionless, v = dv/dt = 0, we have the equation of motion
0 = (4/3)πa3ρg − Ee− (4/3)πa3ρ′g, where ρ is the density of the oil and ρ′ is the
density of air. Solving for e yields the answer.



2.3 31

28.(a) In terms of displacement, the differential equation is mvdv/dx = −kv +mg.
This follows from the chain rule: dv/dt = (dv/dx)(dx/dt) = vdv/dx. The differen-
tial equation is separable, x(0) = 0, so

x(v) = −mv
k
− m2g

k2
ln

∣∣∣∣mg − k vmg

∣∣∣∣ .
The inverse exists, since both x and v are monotone increasing. In terms of the
given parameters, x(v) = −1.25 v − 15.32 ln |0.0816 v − 1|.

(b) x(10) = 13.45 meters.

(c) In part (a), set v = 10 m/s and x = 30 meters . Solving numerically, the
required value is k = 0.239.

29.(a) Let x represent the height above the earth’s surface. The equation of motion
is given by mdv/dt = −GMm/(R+ x)2, in which G is the universal gravitational
constant. The symbols M and R are the mass and radius of the Earth, respectively.
By the chain rule,

mv
dv

dx
= −G Mm

(R+ x)2
.

This equation is separable, with vdv = −GM(R+ x)−2dx. Integrating both sides,
and invoking the initial condition v(0) =

√
2gR, the solution is

v2 = 2GM(R+ x)−1 + 2gR− 2GM/R.

From elementary physics, it follows that g = GM/R2, and v(x) =
√

2g (R/
√
R+ x).

(Note that g = 78, 545 mi/hr2.)

(b) We now consider dx/dt =
√

2g (R/
√
R+ x ). This equation is also separable,

with
√
R+ x dx =

√
2g Rdt. By definition of the variable x, the initial condition is

x(0) = 0. Integrating both sides, we obtain

x(t) = (
3

2
(
√

2g R t+
2

3
R3/2))2/3 −R.

Setting the distance x(T ) +R = 244, 000 , and solving for T , the duration of such
a flight would be T ≈ 50.6 hours .
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30.(a) We obtain these by solving the given differential equations with the initial
conditions v(0) = u cosA and w(0) = u sinA.

(b) From part (a) dx/dt = v = u cosA and hence x(t) = tu cosA+ d1. Since x(0) =
0, we have d1 = 0 and x(t) = tu cosA. Likewise, dy/dt = w = −gt+ u sinA and
therefore y(t) = −gt2/2 + tu sinA+ d2. Since y(0) = h we have d2 = h and y(t) =
−gt2/2 + tu sinA+ h.

(c)

(d) Let tw be the time the ball reaches the wall. Then x(tw)) = L = twu cosA and
thus tw = L/(u cosA). For the ball to clear the wall y(tw) ≥ H and thus (setting
tw = L/(u cosA), g = 32 and h = 3 in y) we get −16L2/(u2 cos2A) + L tanA+ 3 ≥
H.

(e) Setting L = 350 andH = 10 we get−161.98/ cos2A+ 350 tanA ≥ 7 or 7 cos2A−
350 cosA sinA+ 161.98 ≤ 0. This can be solved numerically or by plotting the left
side as a function of A and finding where the zero crossings are.

(f) Setting L = 350 and H = 10 in the answer to part (d) yields the equation
−16(350)2/(u2 cos2A) + 350 tanA = 7, where we have chosen the equality sign
since we want to just clear the wall. Solving for u2, we obtain that in this case
u2 = 1, 960, 000/(175 sin 2A− 7 cos2A). Now u will have a minimum when the
denominator has a maximum. Thus 350 cos 2A+ 7 sin 2A = 0, or tan 2A = −50,
which yields A = 0.7954 rad and u = 106.89 ft/sec.

2.4

1. If the equation is written in the form of Eq.(1), then p(t) = ln t/(t− 3) and g(t) =
2t/(t− 3). These are defined and continuous on the intervals (0, 3) and (3,∞), but
since the initial point is t = 1, the solution will be continuous on 0 < t < 3.

4. p(t) = 2t/(4− t2) and g(t) = 3t2/(4− t2), which have discontinuities at t = ±2.
Since t0 = −3, the solution will be continuous on −∞ < t < −2.
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8. Theorem 2.4.2 guarantees a unique solution to the differential equation through
any point (t0, y0) such that t20 + y20 < 1 since ∂f/∂y = −y/(1− t2 − y2)1/2 is defined
and continuous only for 1− t2 − y2 > 0. Note also that f = (1− t2 − y2)1/2 is
defined and continuous in this region as well as on the boundary t2 + y2 = 1. The
boundary can’t be included in the final region due to the discontinuity of ∂f/∂y
there.

11. In this case f = (1 + t2)/(y(3− y)), and then ∂f/∂y = (1 + t2)/(y(3− y)2)−
(1 + t2)/(y2(3− y)), which are both continuous everywhere except for y = 0 and
y = 3.

13. The differential equation can be written as ydy = −4tdt, so y2/2 = −2t2 + c,
or y2 = c− 4t2. The initial condition then yields y20 = c, so that y2 = y20 − 4t2 or
y = ±

√
y20 − 4t2, which is defined for 4t2 < y20 or |t| < |y0|/2. Note that y0 6= 0

since Theorem 2.4.2 does not hold there.

17.

From the direction field (or the given differential equation) it is noted that for t > 0
and y < 0 that y′ < 0, so y → −∞ for y0 < 0. Likewise, for 0 < y0 < 3, y′ > 0 and
y′ → 0 as y → 3, so y → 3 for 0 < y0 < 3 and for y0 > 3, y′ < 0 and again y′ → 0
as y → 3, so y → 3 for y0 > 3. For y0 = 3, y′ = 0 and y = 3 for all t and for y0 = 0,
y′ = 0 and y = 0 for all t.

22.(a) For y1 = 1− t, y′1 = −1, so substitution into the differential equation gives
−1 = (−t+

√
t2 + 4(1− t))/2 = (−t+

√
(t− 2)2)/2 = (−t+ |t− 2|)/2. By the def-

inition of the absolute value, the right side is −1 if t− 2 ≥ 0. Setting t = 2 in y1 we
get y1(2) = −1, as required by the initial condition. For y2 = −t2/4, y′2 = −t/2 so
substitution into the differential equation yields−t/2 = (−t+

√
t2 + 4(−t2/4))/2 =

−t/2 which is valid for all t values. Also, y2(2) = −1.

(b) By Theorem 2.4.2 we are guaranteed a unique solution only where f(t, y) =

(−t+
√
t2 + 4y)/2 and fy(t, y) = 1/

√
t2 + 4y are continuous. In this case the ini-

tial point (2,−1) lies in the region t2 + 4y ≤ 0, so ∂f/∂y is not continuous and
hence the theorem is not applicable and there is no contradiction.
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(c) For y = ct+ c2 follow the steps of part (a). If y = y2(t) then we must have
ct+ c2 = −t2/4 for all t, which is not possible since c is a constant.

23.(a) φ(t) = e2t gives φ′(t) = 2e2t so φ′ − 2φ = 0. φ(t) = ce2t gives φ′(t) = 2ce2t,
so φ′ − 2φ = 0.

(b) φ(t) = t−1 gives φ′(t) = −t−2 so φ′ + φ2 = 0. φ(t) = ct−1 gives φ′(t) = −ct−2,
so φ′ + φ2 6= 0 unless c = 0 or c = 1.

25. (y1(t) + y2(t))′ + p(t)(y1(t) + y2(t)) = y′1(t) + p(t)y1(t) + y′2(t) + p(t)y2(t) = 0 +
g(t).

27.(a) For n = 1, we have y′ + (p(t)− q(t))y = 0, which is linear. Thus Eq.(3) gives
y(t) = cµ−1(t) = ce−

∫
(p(t)−q(t)) dt, since g(t) = 0.

(b) Let v = y1−n, then dv/dt = (1− n)y−ndy/dt, so dy/dt = (1/(1− n))yndv/dt,
for n 6= 1. Substituting into the differential equation yields (1/(1− n))yndv/dt+
p(t)y = q(t)yn, or v′ + (1− n)p(t)y1−n = (1− n)q(t), which is v′ + (1− n)p(t)v =
(1− n)q(t), which is a linear differential equation for v.

28. Here n = 3, so v = y−2 and dv/dt = −2y−3dy/dt or dy/dt = −(1/2)y3dv/dt.
Substituting this into the equation gives −(1/2)y3dv/dt+ (2/t)y = (1/t2)y3. Sim-
plifying and using y−2 = v then gives the linear differential equation v′ − (4/t)v =
−(2/t2). Thus µ(t) = 1/t4 and v(t) = ct4 + 2/(5t) = (2 + 5ct5)/(5t). Solving for y
gives y = ±

√
5t/(2 + 5ct5).

29. Here n = 2, so v = y−1 and dv/dt = −y−2dy/dt. Thus the differential equation
becomes −y−2dv/dt− ry = −ky2 or dv/dt+ rv = k. Hence µ(t) = ert and v =
(k/r) + ce−rt. Setting v = 1/y then yields the solution.

32. Since g(t) is continuous on the interval 0 ≤ t ≤ 1 and hence we solve the ini-
tial value problem y′1 + 2y1 = 1, y1(0) = 0 on that interval to obtain y1 = 1/2−
(1/2)e−2t, 0 ≤ t ≤ 1. For 1 < t, g(t) = 0; and hence we solve y′2 + 2y2 = 0 to ob-
tain y2 = ce−2t, 1 < t. The solution y of the original initial value problem must be
continuous at t = 1 (since its derivative must exist) and hence we need c in y2 so y2
at 1 has the same value as y1 at 1. Thus ce−2 = 1/2− e−2/2 or c = (1/2)(e2 − 1)
and we obtain

y(t) =

{
1
2 −

1
2e
−2t , 0 ≤ t ≤ 1

1
2 (e2 − 1)e−2t, t > 1

.

and

y′(t) =

{
e−2t , 0 < t < 1

(1− e2)e−2t, t > 1
.

Evaluating the two parts of y′ at t0 = 1 we see that they are different, and hence
y′ is not continuous at t0 = 1.
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2.5

3.

1

0

2

From the graph, y′ < 0 when 1 < y < 2 and y′ > 0 when 0 < y < 1 or y > 2, so the
equilibrium solutions y = 0 and y = 2 are unstable, the equilibrium solution y = 1
is asymptotically stable.

5.
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0

The only equilibrium point is y∗ = 0, and y′ > 0 when y < 0, y′ < 0 when y > 0,
hence the equilibrium solution y = 0 is asymptotically stable.

7.(a) f(y) = 0 only when y = 1. Therefore, y∗ = 1 is the only critical point.

(b)

(c) Separate variables to get dy/(1− y)2 = kdt. Integration yields 1/(1− y) = kt+
c, or y = (kt+ c− 1)/(kt+ c). Setting t = 0 and y(0) = y0 yields y0 = (c− 1)/c
or c = 1/(1− y0). Hence y(t) = [y0 + (1− y0)kt]/[1 + (1− y0)kt]. If y0 < 1, then
y → 1 as t→∞. If y0 > 1, then the denominator will go to zero at some finite time
T = 1/(y0 − 1). Therefore, the solution will go towards infinity at that time T .
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9.

0

-1

1

The critical points are y = 0,±1. We have y′ > 0 for |y| > 1 while y′ < 0 for |y| < 1.
Thus the equilibrium solution y = −1 is asymptotically stable, y = 0 is semistable
and y = 1 is unstable.

11.
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y = b2/a2 and y = 0 are the only critical points. For 0 < y < b2/a2, y′ < 0. For
y > b2/a2, y′ > 0. Thus the equilibrium solution y = 0 is asymptotically stable, the
equilibrium solution y = b2/a2 is unstable.

14. If f ′(y1) < 0 then the slope of f is negative at y1 and thus f(y) > 0 for y < y1
and f(y) < 0 for y > y1 since f(y1) = 0. Hence y1 is an asymptotically stable
critical point. A similar argument will yield the result for f ′(y1) > 0.

16.(a)

The critical points occur at y∗ = 0,K. Since f ′(0) > 0, y∗ = 0 is unstable. Since
f ′(K) < 0, y∗ = K is asymptotically stable.

(b) We calculate y′′. Using the chain rule, we see that

y′′ = ry′
[
ln

(
K

y

)
− 1

]
.

We see that y′′ = 0 when y′ = 0 (meaning y = 0,K) or when ln(K/y)− 1 = 0,
meaning y = K/e. Looking at the sign of y′′ in the intervals 0 < y < K/e and
K/e < y < K, we conclude that y is concave up in the interval 0 < y < K/e and
concave down in the interval K/e < y < K.

(c) ln(K/y) is very large for small values of y and thus ry ln(K/y) > ry(1− y/K) for
small y. Since ln(K/y) and (1− y/K) are both strictly decreasing functions of y and
since ln(K/y) = (1− y/K) only for y = K, we may conclude that y′ = ry ln(K/y)
is never less than y′ = ry(1− y/K).
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17.(a) Consider the change of variable u = ln(y/K). Differentiating both sides with
respect to t, u ′ = y ′/y. Substitution into the Gompertz equation yields u ′ = −ru,
with solution u = u0e

−rt. It follows that ln(y/K) = ln(y0/K)e−rt. This implies

that y/K = eln(y0/K)e−rt

.

(b) Given K = 80.5× 106, y0/K = 0.25 and r = 0.71 per year, y(2) = 57.58× 106.

(c) Solving for t,

t = −1

r
ln

[
ln(y/K)

ln(y0/K)

]
.

Setting y(τ) = 0.75K, the corresponding time is τ ≈ 2.21 years.

18.(a) The differential equation is dV/dt = k − απr2. The volume of a cone of
height L and radius r is given by V = πr2L/3 where L = hr/a from symmetry.
Solving for r yields the desired equation dV/dt = k − απ(3a/πh)2/3V 2/3.

(b) The equilibrium is given by the equation k = απr2, which yields r =
√
k/απ

and then L = h
√
k/απ/a. By checking the graph of V ′ we obtain that this is an

asymptotically stable equilibrium point.

(c) The equilibrium height must be less than h, or
√
k/απ/a < 1.

20.(a) If E < r, then the equilibrium points are given by 0 = r(1− y/K)y − Ey =
y(r − ry/K − E), which means that either y = 0 or y = (r − E)K/r = (1− E/r)K >
0.

(b) f ′(y) = r − E − 2ry/K, so f ′(0) = r − E > and 0 is an unstable equilibrium,
while f ′((1− E/r)K) = E − r < 0 and (1− E/r)K is an asymptotically stable
equilibrium.

(c) Y = E(1− E/r)K.

(d) We have to solve 0 = dY/dE = K − 2EK/r to get E = r/2, and then Ym =
rK/4.

21.(a) Setting dy/dt = 0 the quadratic formula yields the roots

y1,2 =
r ±

√
r2 − 4rh/K

2r/K
=
K

2

(
1±

√
1− 4h

rK

)
,

which are real when h < rK/4. (y1 < y2 because of the minus sign in front of the
square root.)

(b) The graph of the right side of the differential equation is a downward opening
parabola, which implies that y1 is unstable and y2 is asymptotically stable. We can
also use the derivative test of Problem 14.
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(c) The graph of f(y) is a downward opening parabola intersecting the horizontal
axis at y1 and y2, so we know that between y1 and y2 the value of y′ = f(y) is
positive, which implies that if y1 < y0 < y2, then the solution is increasing towards
y2, and when y2 < y0, the solution is decreasing towards y2 (because y′ = f(y) is
negative there). Also, when y0 < y1, then y′ < 0, so the solution will decrease and
reach 0 in finite time.

(d) If h > rK/4 there are no critical points (see part (a)) and dy/dt < 0 for all t.

(e) We can see from part (a) that when h = rK/4, then y1 = y2. The graph of
f(y) intersects the horizontal axis at a single point of tangency in this case, and
y′ = f(y) is negative for any other y value, giving the semistability result.

24.(a) Letting ′ = d/dt, we obtain that the derivative is z′ = (nx′ − xn′)/n2 =
(−βnx− µnx+ νβx2 + µnx)/n2 = −βx/n+ νβx2/n2 = −βz + νβz2 = −βz(1− νz).

(b) First, we rewrite the equation as z′ + βz = βνz2. This is a Bernoulli equation
with n = 2. Let w = z1−n = z−1. Then, our equation can be written as w′ − βw =
−βν. This is a linear equation with solution w = ν + ceβt. Then, using the fact
that z = 1/w, we see that z = 1/(ν + ceβt). Finally, the initial condition z(0) = 1
implies c = 1− ν. Therefore, z(t) = 1/(ν + (1− ν)eβt).

(c) Evaluating z(20) for ν = β = 1/8, we conclude that z(20) = 0.0927.

25.(a) The critical points occur when a− y2 = 0. If a < 0, there are no critical
points. If a = 0, then y∗ = 0 is the only critical point. If a > 0, then y∗ = ±

√
a are

the two critical points.

(b) We note that f ′(y) = −2y. Therefore, f ′(
√
a) < 0 which implies that

√
a is

asymptotically stable; f ′(−
√
a) > 0 which implies −

√
a is unstable; the behavior

of f ′ around y∗ = 0 implies that y∗ = 0 is semistable.

(c) Below, we graph solutions in the case a = −1, a = 0 and a = 1 respectively.
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28. (a) Since the critical points are x∗ = p, q, we will look at their stability.
Since f ′(x) = −αq − αp+ 2αx2, we see that f ′(p) = α(2p2 − q − p) and f ′(q) =
α(2q2 − q − p). Now if p > q, then −p < −q, and, therefore, f ′(q) = α(2q2 − q −
p) < α(2q2 − 2q) = 2αq(q − 1) < 0 since 0 < q < 1. Therefore, if p > q, f ′(q) < 0,
and, therefore, x∗ = q is asymptotically stable. Similarly, if p < q, then x∗ = p
is asymptotically stable, and therefore, we can conclude that x(t)→ min{p, q} as
t→∞.

The equation is separable. It can be solved by using partial fractions as follows.
We can rewrite the equation as(

1/(q − p)
p− x

+
1/(p− q)
q − x

)
dx = αdt,

which implies

ln

∣∣∣∣p− xq − x

∣∣∣∣ = (p− q)αt+ C.

The initial condition x0 = 0 implies C = ln |p/q|, and, therefore,

ln

∣∣∣∣q(p− x)

p(q − x)

∣∣∣∣ = (p− q)αt.

Applying the exponential function and simplifying, we conclude that

x(t) =
pq(e(p−q)αt − 1)

pe(p−q)αt − q
=
pq(eα(q−p)t − 1)

qeα(q−p)t − p
.
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(b) In this case, x∗ = p is the only critical point. Since f(x) = α(p− x)2 is concave
up, we conclude that x∗ = p is semistable. Further, if x0 = 0, we can conclude
that x→ p as t→∞. This equation is separable. Its solution is given by x(t) =
p2αt/(pαt+ 1).

2.6

3. Here M(x, y) = 3x2 − 2xy + 2 and N(x, y) = 6y2 − x2 + 3. Since My = −2x =
Nx, the equation is exact. Since ψx = M = 3x2 − 2xy + 2, to solve for ψ, we in-
tegrate M with respect to x. We conclude that ψ = x3 − x2y + 2x+ h(y). Then
ψy = −x2 + h′(y) = N = 6y2 − x2 + 3 implies h′(y) = 6y2 + 3. Therefore, h(y) =
2y3 + 3y and ψ(x, y) = x3 − x2y + 2x+ 2y3 + 3y = c.

5. Here M(x, y) = ax+ by and N(x, y) = bx+ cy. Since My = b = Nx, the equa-
tion is exact. Since ψx = M = ax+ by, to solve for ψ, we integrate M with respect
to x. We conclude that ψ = ax2/2 + bxy + h(y). Then ψy = bx+ h′(y) = N =
bx+ cy implies h′(y) = cy. Therefore, h(y) = cy2/2 and ψ(x, y) = ax2 + 2bxy +
cy2 = k.

7. Here M(x, y) = ex sin y − 2y sinx and N(x, y) = ex cos y + 2 cosx. Since My =
ex cos y − 2 sinx = Nx, the equation is exact. Since ψx = M = ex sin y − 2y sinx,
to solve for ψ, we integrate M with respect to x. We conclude that ψ = ex sin y +
2y cosx+ h(y). Then ψy = ex cos y + 2 cosx+ h′(y) = N = ex cos y + 2 cosx im-
plies h′(y) = 0. Therefore, h(y) = c and ψ(x, y) = ex sin y + 2y cosx = c.

9. Here M(x, y) = yexy cos(2x)− 2exy sin(2x) + 2x and N(x, y) = xexy cos(2x)−
3. Since My = exy cos(2x) + xyexy cos(2x)− 2xexy sin(2x) = Nx, the equation is
exact. If we try to find ψ(x, y) by integrating M(x, y) with respect to x we must
integrate by parts. Instead we find ψ(x, y) by integrating N(x, y) with respect to
y to obtain ψ(x, y) = exy cos(2x)− 3y + g(x). Then we find g(x) by differentiating
ψ(x, y) with respect to x and setting it equal to M(x, y), resulting in g′(x) = 2x or
g(x) = x2. As before, the implicit solution is ψ(x, y) = exy cos(2x) + x2 − 3y = c.

12. Here M(x, y) = x/(x2 + y2)3/2 and N(x, y) = y/(x2 + y2)3/2. Since My = Nx,
the equation is exact. Since ψx = M = x/(x2 + y2)3/2, to solve for ψ, we integrate
M with respect to x. We conclude that ψ = −1/(x2 + y2)1/2 + h(y). Then ψy =
y/(x2 + y2)3/2 + h′(y) = N = y/(x2 + y2)3/2 implies h′(y) = 0. Therefore, h(y) =
0 and ψ(x, y) = −1/(x2 + y2)1/2 = c or x2 + y2 = k. We can observe that as long as
x2 + y2 6= 0, we can simplify the equation by multiplying both sides by (x2 + y2)3/2.
This gives the (simpler) exact equation xdx+ ydy = 0, whose solution is the same
as the above.

14. Here M(x, y) = 9x2 + y − 1 and N(x, y) = −4y + x. Therefore, My = Nx = 1
which implies that the equation is exact. Integrating M with respect to x, we con-
clude that ψ = 3x3 + xy − x+ h(y). Then ψy = x+ h′(y) = N = −4y + x implies
h′(y) = −4y. Therefore, h(y) = −2y2 and we get ψ = 3x3 + xy − x− 2y2 = c. The
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initial condition y(1) = 0 implies c = 2. Therefore, 3x3 + xy − x− 2y2 = 2. Solv-
ing for y using the quadratic formula, we get y = [x− (24x3 + x2 − 8x− 16)1/2]/4.
Using a numerical process the square root term is positive for x > 0.9846.

15. Here M(x, y) = xy2 + bx2y and N(x, y) = x3 + x2y. Therefore, My = 2xy +
bx2 and Nx = 3x2 + 2xy. In order for the equation to be exact, we need b = 3.
Taking this value for b, we integrating M with respect to x. We conclude that ψ =
x2y2/2 + x3y + h(y). Then ψy = x2y + x3 + h′(y) = N = x3 + x2y implies h′(y) =
0. Therefore, h(y) = c and ψ(x, y) = x2y2/2 + x3y = c. That is, the solution is
given implicitly as x2y2 + 2x3y = k.

19. Here M(x, y) = x2y3 and N(x, y) = x+ xy2. Therefore, My = 3x2y2 and
Nx = 1 + y2. We see that the equation is not exact. Now, multiplying the equation
by µ(x, y) = 1/xy3, the equation becomes xdx+ (1 + y2)/y3dy = 0. Now we see
that for this equation M = x and N = (1 + y2)/y3. Therefore, My = 0 = Nx. In-
tegrating M with respect to x, we see that ψ = x2/2 + h(y). Further, ψy = h′(y) =
N = (1 + y2)/y3 = 1/y3 + 1/y. Therefore, h(y) = −1/2y2 + ln y and we conclude
that the solution of the equation is given implicitly by x2 − 1/y2 + 2 ln y = c and
y = 0.

22. We see that My = (x+ 2) cos y while Nx = cos y. Therefore, My 6= Nx. How-
ever, multiplying the equation by the given integrating factor µ(x, y) = xex, this
becomes (x2 + 2x)ex sin ydx+ x2ex cos ydy = 0. Now we see that for this equation
My = (x2 + 2x)ex cos y = Nx. To solve this exact equation it is easiest to integrate
(the new) N with respect to y to get ψ(x, y) = x2ex sin y + g(x). Finding ψx and
setting it equal to (the new) M yields g′(x) = 0, which implies that the solution of
the equation is given implicitly by x2ex sin y = c.

23. Suppose µ is an integrating factor which will make the equation exact. Then
multiplying the equation by µ, we have µMdx+ µNdy = 0. Then we need (µM)y =
(µN)x. That is, we need µyM + µMy = µxN + µNx. Then we rewrite the equation
as µ(Nx −My) = µyM − µxN . Suppose µ does not depend on x. Then µx =
0. Therefore, µ(Nx −My) = µyM . Using the assumption that (Nx −My)/M =
Q(y), we can find an integrating factor µ by choosing µ which satisfies µy/µ = Q.
We conclude that µ(y) = exp

∫
Q(y) dy is an integrating factor of the differential

equation.

25. Since (My −Nx)/N = 3 is a function of x only, we know that µ = e3x is an
integrating factor for this equation. Multiplying the equation by µ, we obtain
the equation e3x(3x2y + 2xy + y3)dx+ e3x(x2 + y2)dy = 0. Then My = e3x(3x2 +
2x+ 3y2) = Nx. Therefore, this new equation is exact. Integrating M with respect
to x, we conclude that ψ = (x2y + y3/3)e3x + h(y). Then ψy = (x2 + y2)e3x +
h′(y) = N = e3x(x2 + y2). Therefore, h′(y) = 0 and we conclude that the solution
is given implicitly by (3x2y + y3)e3x = c.

26. Since (My −Nx)/N = −1 is a function of x only, we know that µ = e−x is an
integrating factor for this equation. Multiplying the equation by µ, we obtain the
equation (e−x − ex − ye−x)dx+ e−xdy = 0. Then My = −e−x = Nx. Therefore,
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this new equation is exact. Integrating M with respect to x, we conclude that ψ =
−e−x − ex + ye−x + h(y). Then ψy = e−x + h′(y) = N = e−x. Therefore, h′(y) =
0 and we conclude that the solution is given implicitly by −e−x − ex + ye−x =
c. Alternatively, we might recognize that y′ − y = e2x − 1 is a linear first order
equation which can be solved as in Section 2.1.

27. Since (Nx −My)/M = 1/y is a function of y only, we know by Problem 23

that µ(y) = e
∫
1/y dy = y is an integrating factor for this equation. Multiplying the

equation by µ, we obtain ydx+ (x− y sin y)dy = 0. Then for this equation, My =
1 = Nx. Therefore, this new equation is exact. Integrating M with respect to x, we
conclude that ψ = xy + h(y). Then ψy = x+ h′(y) = N = x− y sin y. Therefore,
h′(y) = −y sin y which implies that h(y) = − sin y + y cos y, and we conclude that
the solution is given implicitly by xy − sin y + y cos y = c.

29. Since (Nx −My)/M = cot(y) is a function of y only, we know that µ(y) =

e
∫
cot(y) dy = sin(y) is an integrating factor for this equation. Multiplying the equa-

tion by µ, we obtain ex sin ydx+ (ex cos y + 2y)dy = 0. Then for this equation,
My = Nx. Therefore, this new equation is exact. Integrating M with respect to x,
we conclude that ψ = ex sin y + h(y). Then ψy = ex cos y + h′(y) = N = ex cos y +
2y. Therefore, h′(y) = 2y which implies that h(y) = y2, and we conclude that the
solution is given implicitly by ex sin y + y2 = c.

31. Since (Nx −My)/(xM − yN) = 1/xy is a function of xy only, we know by

Problem 24 that µ(xy) = e
∫
1/xy dy = xy is an integrating factor for this equation.

Multiplying the equation by µ, we obtain (3x2y + 6x)dx+ (x3 + 3y2)dy = 0. Then
for this equation, My = Nx. Therefore, this new equation is exact. Integrating
M with respect to x, we conclude that ψ = x3y + 3x2 + h(y). Then ψy = x3 +
h′(y) = N = x3 + 3y2. Therefore, h′(y) = 3y2 which implies that h(y) = y3, and
we conclude that the solution is given implicitly by x3y + 3x2 + y3 = c.

2.7

1. The Euler formula is yn+1 = yn + h(3 + tn − yn) = (1− h)yn + h(3 + tn).

(a) 1.2, 1.39, 1.571, 1.7439

(b) 1.1975, 1.38549, 1.56491, 1.73658

(c) 1.19631, 1.38335, 1.56200, 1.73308

(d) The differential equation is linear with solution y(t) = 2 + t− e−t. The values
are 1.19516, 1.38127, 1.55918, 1.72968.

3. The Euler formula is yn+1 = yn + h(0.5− tn + 2yn) = (1 + 2h)yn + h(0.5− tn).
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(a) 1.25, 1.54, 1.878, 2.2736

(b) 1.26, 1.5641, 1.92156, 2.34359

(c) 1.26551, 1.57746, 1.94586, 2.38287

(d) The differential equation is linear with solution y(t) = 0.5t+ e2t. The values
are 1.2714, 1.59182, 1.97212, 2.42554.

4. The Euler formula is yn+1 = yn + h(3 cos(tn)− 2yn) = (1− 2h)yn + 3h cos(tn).

(a) 0.3, 0.538501, 0.724821, 0.866458

(b) 0.284813, 0.513339, 0.693451, 0.831571

(c) 0.277920, 0.501813, 0.678949, 0.815302

(d) The differential equation is linear with solution y(t) = (6 cos(t) + 3 sin(t)−
6e−2t)/5. The values are 0.271428, 0.490897, 0.665142, 0.799729.

6.

Solutions with y(0) > 0 appear to converge to a specific function, while solutions
with y(0) < 0 decrease without bound. y = 0 is an equilibrium solution.

9.
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All solutions seem to diverge.

13. The Euler formula is yn+1 = yn + h(4− tnyn)/(1 + y2n) with (t0, y0) = (0,−2).

(a) −1.48849, −0.412339, 1.04687, 1.43176, 1.54438, 1.51971

(b) −1.46909, −0.287883, 1.05351, 1.42003, 1.53000, 1.50549

(c) −1.45865, −0.217545, 1.05715, 1.41486, 1.52334, 1.49879

(d) −1.45212, −0.173376, 1.05941, 1.41197, 1.51949, 1.49490

15. The Euler formula is yn+1 = yn + h3t2n/(3y
2
n − 4) with initial value (t0, y0) =

(1, 0).

(a) −0.166134, −0.410872, −0.804660, 4.15867

(b) −0.174652, −0.434238, −0.889140, −3.09810

(c) There are two factors that explain the large differences. From the differential
equation, the slope of y, y′, becomes very large for values of y near −1.155. Also, the
slope changes sign at y = −1.155. Thus for part (a), y(1.7) = y7 = −1.178, which
is close to −1.155 and the slope y′ here is large and positive, creating the large
change in y8 = y(1.8). For part (b), y(1.65) = −1.125, resulting in a large negative
slope, which yields y(1.7) = −3.133. The slope at this point is now positive and
the remainder of the solutions grow to −3.098 for the approximation to y(1.8).

16. The Euler formula is yn+1 = yn + h(t2n + y2n) with (t0, y0) = (0, 1). For the
four step sizes given, the approximate values for y(0.8) are 3.5078, 4.2013, 4.8004
and 5.3428. Thus, since these changes are still rather large, it is hard to give an
estimate other than y(0.8) is at least 5.3428. By using h = 0.005, 0.0025 and 0.001,
we find further approximate values of y(0.8) to be 5.576, 5.707 and 5.790. Thus a
better estimate now is for y(0.8) to be between 5.8 and 6. No reliable estimate is
obtainable for y(1), which is consistent with the direction field of Problem 9.

18.(a) See the direction field in Problem 8 above.

(b) The Euler formula is yn+1 = yn + h(−tnyn + 0.1y3n). For y0 < 2.37, the so-
lutions seem to converge, while the solutions seem to diverge if y0 > 2.38. We
conclude that 2.37 < α0 < 2.38.

22. Using Eq.(8) we have yn+1 = yn + h(2yn − 1) = (1 + 2h)yn − h. Setting n+
1 = k (and hence n = k − 1) this becomes yk = (1 + 2h)yk−1 − h, for k = 1, 2, . . ..
Since y0 = 1, we have y1 = 1 + 2h− h = 1 + h = (1 + 2h)/2 + 1/2, and hence y2 =
(1 + 2h)y1 − h = (1 + 2h)2/2 + (1 + 2h)/2− h = (1 + 2h)2/2 + 1/2. Furthermore,
y3 = (1 + 2h)y2 − h = (1 + 2h)3/2 + (1 + 2h)/2− h = (1 + 2h)3/2 + 1/2. Contin-
uing in this fashion (or using induction) we obtain yk = (1 + 2h)k/2 + 1/2. For
fixed t > 0 choose h = t/k. Then substitute for h in the last formula to obtain
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yk = (1 + 2t/k)k/2 + 1/2. Letting k →∞ we find (see hint for Problem 20(d))
that y(t) = limk→∞ yk = e2t/2 + 1/2, which is the exact solution.

2.8

1. Let s = t− 1 and w(s) = y(t(s))− 2, then when t = 1 and y = 2 we have
s = 0 and w(0) = 0. Also, dw/ds = (dw/dt)(dt/ds) = (d/dt)(y − 2)(dt/ds) = dy/dt
(since t = s+ 1) and hence dw/ds = (s+ 1)2 + (w + 2)2, upon substitution into the
given differential equation.

4.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[−φn(s)− 1] ds .

Setting φ0(t) = 0 , φ1(t) = −t . Continuing, φ2(t) = −t+ t2/2, φ3(t) = −t+ t2/2−
t3/(2 · 3), φ4(t) = −t+ t2/2− t3/3! + t4/4!, . . . . Based upon these we conjecture
that φn(t) =

∑n
k=1(−1)ktk/k ! and use mathematical induction to verify this form

for φn(t). First, let n = 1, then φn(t) = −t, so it is certainly true for n = 1. Then,
using Eq.(7) again we have

φn+1(t) =

∫ t

0

[−φn(s)− 1] ds =

∫ t

0

[−
n∑
k=1

(−1)k

k !
sk − 1] ds =

n+1∑
k=1

(−1)k

k !
tk,

and we have verified our conjecture.

(b)

(c) Recall from calculus that eat = 1 +
∑∞
k=1 a

ktk/k!. Thus

φ(t) =

∞∑
k=1

(−1)k

k !
tk = e−t − 1 .
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(d)

From the plot it appears that φ4 is a good estimate for |t| < 1.

7.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[sφn(s) + 1] ds .

Setting φ0(t) = 0 , φ1(t) = t . Continuing, φ2(t) = t+ t3/3, φ3(t) = t+ t3/3 + t5/(3 ·
5), φ4(t) = t+ t3/3 + t5/(3 · 5) + t7/(3 · 5 · 7), . . . . Based upon these we conjecture
that φn(t) =

∑n
k=1 t

2k−1/(1 · 3 · 5 · · · (2k − 1)) and use mathematical induction to
verify this form for φn(t). First, let n = 1, then φn(t) = t, so it is certainly true for
n = 1. Then, using Eq.(7) again we have

φn+1(t) =

∫ t

0

[sφn(s) + 1] ds =

∫ t

0

[

n∑
k=1

s
s2k−1

1 · 3 · · · (2k − 1)
+ 1] ds =

n+1∑
k=1

t2k−1

1 · 3 · · · (2k − 1)
,

and we have verified our conjecture.

(b)

(c) Using the identity φn(t) = φ1(t) + [φ2(t)− φ1(t) + [φ3(t)− φ2(t)] + . . .+ [φn(t)−
φn−1(t)], consider the series φ1(t) +

∑∞
k=1[φk+1(t)− φk(t)]. Fix any t value now.
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We use the Ratio Test to prove the convergence of this series:∣∣∣∣φk+1(t)− φk(t)

φk(t)− φk−1(t)

∣∣∣∣ =

∣∣∣∣∣∣
t2k+1

1·3···(2k+1)

t2k−1

1·3···(2k−1)

∣∣∣∣∣∣ =
|t|2

2k + 1
.

The limit of this quantity is 0 for any fixed t as k →∞, and we obtain that φn(t)
is convergent for any t.

10.(a) The approximating functions are defined recursively by

φn+1(t) =

∫ t

0

[
1− φ3n(s)

]
ds .

Set φ0(t) = 0. The first three iterates are given by φ1(t) = t , φ2(t) = t− t4/4 ,
φ3(t) = t− t4/4 + 3t7/28− 3t10/160 + t13/832.

(b)

The approximations appear to be diverging.

11.(a) First, recall that sinx = x− x3/3! + x5/5! +O(x7). Now, for this prob-

lem, φ1(t) =
∫ t
0
[1− sinφ0(s)] ds = t and we obtain that φ2(t) =

∫ t
0
[1− sin s] ds =∫ t

0
[1− (s− s3/3! + s5/5! +O(s7)] ds = t− t2/2! + t4/4!− t6/6! +O(t8). For φ3 we

need to find sin(φ2(t)), which is given by sin(φ2(t)) = φ2(t)− φ32(t)/3! + φ52(t)/5! +
O(t7) = (t− t2/2! + t4/4!− t6/6!)− (t− t2/2!)3/3! + t5/5! +O(t7), where we have

retained only the terms less thanO(t7). Now use this in φ3(t) =
∫ t
0
[1− sin(φ2(s))] ds,

which gives the desired answer up to O(t8).
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(b)

13. Note that φn(0) = 0 and φn(1) = 1 , for every n ≥ 1 . Let a ∈ (0 , 1) . Then
φn(a) = an . Clearly, limn→∞ an = 0 . Hence the assertion is true.

2.9

2. Using the given difference equation we have for n = 0, y1 = y0/2, for n = 1,
y2 = 2y1/3 = y0/3; and for n = 2, y3 = 3y2/4 = y0/4. Thus we guess that yn =
y0/(n+ 1), and the given equation the gives yn+1 = (n+ 1)yn/(n+ 2) = y0/(n+
2), which, by mathematical induction, verifies yn = y0/(n+ 1) as the solution for
all n. limn→∞ = 0, as y0 is constant.

5. Writing the equation for each n ≥ 0 ,

y1 = 0.5 y0 + 6

y2 = 0.5 y1 + 6 = 0.5(0.5 y0 + 6) + 6 = (0.5)2y0 + 6 + (0.5)6

y3 = 0.5 y2 + 6 = 0.5(0.5 y1 + 6) + 6 = (0.5)3y0 + 6
[
1 + (0.5) + (0.5)2

]
...

yn = (0.5)ny0 + 12 [1− (0.5)n ] ,

which follows from Eq.(13) and (14). The sequence is convergent for all y0 , and in
fact yn → 12.

7. Let yn be the balance at the end of the nth day. Then yn+1 = (1 + r/356) yn .
The solution of this difference equation is yn = (1 + r/365)n y0 , in which y0 is the
initial balance. At the end of one year, the balance is y365 = (1 + r/365)365 y0 .
Given that r = .07, y365 = (1 + r/365)365 y0 = 1.0725 y0 . Hence the effective an-
nual yield is (1.0725 y0 − y0)/y0 = 7.25%.

10. As in Ex.(1), the governing equation is yn+1 = ρyn − b, which has the solution
yn = ρny0 − (1− ρn)b/(1− ρ). (Eq.(14) with a negative b). Setting y360 = 0 and
solving for b we obtain b = (1− ρ)ρ360y0/(1− ρ360), where ρ = 1.0075 for part (a).
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13. We must solve Eq.(14) numerically for ρ when n = 240, y240 = 0, b = −$900 and
y0 = $95, 000. The result is ρ = 1.0081, so the monthly interest rate is r = 0.81%,
which is equivalent to an annual rate of 9.73%.

14. Substituting Eq.(25), un = (ρ− 1)/ρ+ vn into Eq.(21) we get (ρ− 1)/ρ+
vn+1 = ρ((ρ− 1)/ρ+ vn)(1− (ρ− 1)/ρ− vn), which after simplification turns into
vn+1 = −(ρ− 1)/ρ+ (ρ− 1 + ρvn)(1/ρ− vn) = (1− ρ)/ρ+ (ρ− 1)/ρ− (ρ− 1)vn +
vn − ρv2n = (2− ρ)vn − ρv2n, which is exactly what we wanted to prove.

15.(a) For u0 = 0.2, we have u1 = 3.2u0(1− u0) = 0.512 and u2 = 3.2u1(1− u1) =
0.7995392. Likewise, we get u3 = 0.51288406, u4 = 0.7994688, u5 = 0.51301899,
u6 = 0.7994576 and u7 = 0.5130404. Continuing, u14 = u16 = 0.79945549 and u15 =
u17 = 0.51304451.

(b) The plots show the nature of solutions.

(a) ρ = 2.6 (b) ρ = 2.8

(c) ρ = 3.2 (d) ρ = 3.4
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16.(a) For example, take ρ = 3.5 and u0 = −0.01:

(b) For example, take ρ = 3.5 and u0 = 1.1:

Clearly, un → −∞ as n→∞.

17. For both parts of this problem a computer was used and an initial value of
u0 = 0.2 was chosen. Different initial values or different computer programs may
need a slightly different number of iterations to reach the limiting value.

(a)

(a) ρ = 2.9 (b) ρ = 2.95 (c) ρ = 2.99

The limiting value of 0.65517 (to 5 decimal places) is reached after approximately
100 iterations for ρ = 2.9. The limiting value of 0.66102 (to 5 decimal places)
is reached after approximately 200 iterations for ρ = 2.95. The limiting value of
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0.66555 (to 5 decimal places) is reached after approximately 910 iterations for ρ =
2.99.

(b)

(a) ρ = 3.01 (b) ρ = 3.05 (c) ρ = 3.1

The solution oscillates between 0.63285 and 0.69938 after approximately 400 it-
erations for ρ = 3.01. The solution oscillates between 0.59016 and 0.73770 after
approximately 130 iterations for ρ = 3.05. The solution oscillates between 0.55801
and 0.76457 after approximately 30 iterations for ρ = 3.1.

18. For an initial value of 0.2 and ρ = 3.448 we have the solution oscillating be-
tween 0.4403086 and 0.8497146. After approximately 3570 iterations the eighth
decimal place is still not fixed, though. For the same initial value and ρ = 3.45 the
solution oscillates between the four values 0.43399155, 0.84746795, 0.44596778 and
0.85242779 after 3700 iterations. For ρ = 3.449 the solution is still varying in the
fourth decimal place after 3570 iterations, but there appear to be four values.

PROBLEMS

Before trying to find the solution of a differential equation, it is necessary to know
its type. The student should first classify the differential equations before looking
at this section, which identifies the type of each differential equation in Problems
1 through 32.

1. The equation is linear.

2. The equation is separable. Separating the variables gives the differential equation
(2− sin y)dy = (1 + cosx)dx, and after integration we obtain that the solution is
2y + cos y − x− sinx = c.

3. The equation is exact. Simplification gives (2x+ y)dx+ (x− 3− 3y2)dy = 0.
We can check thatMy = 1 = Nx, so the equation is really exact. IntegratingM with
respect to x gives that ψ(x, y) = x2 + xy + g(y), then ψy = x+ g′(y) = x− 3− 3y2,
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which means that g′(y) = −3− 3y2, so integrating with respect to y we obtain that
g(y) = −3y − y3. Therefore the solution is defined implicitly as x2 + xy − 3y −
y3 = c. The initial condition y(0) = 0 implies that c = 0, so we conclude that the
solution is x2 + xy − 3y − y3 = 0.

4. The equation is linear. It can be written as y′ + (2x− 1)y = −3(2x− 1), and

the integrating factor is ex
2−x. Multiplication by this integrating factor and the

subsequent integration gives the solution yex
2−x = −3ex

2−x + c, which means that
y = −3 + cex−x

2

. (The equation is also separable.)

5. The equation is exact.

6. The equation is linear.

7. The equation is separable.

8. The equation is linear.

9. The equation is exact. Simplification gives (2xy + 1)dx+ (x2 + 2y)dy = 0. We
can check that My = 2x = Nx, so the equation is really exact. Integrating M with
respect to x gives that ψ(x, y) = x2y + x+ g(y), then ψy = x2 + g′(y) = x2 + 2y,
which means that g′(y) = 2y, so we obtain that g(y) = y2. Therefore the solution
is defined implicitly as x2y + x+ y2 = c.

10. The equation is separable. Factoring the terms we obtain the differential equa-
tion (x2 + x− 1)ydx+ x2(y − 2)dy = 0. We separate the variables by dividing this
equation by yx2 and obtain

(1 +
1

x
− 1

x2
)dx+ (1− 2

y
)dy = 0.

Integration gives us the solution x+ ln |x|+ 1/x− 2 ln |y|+ y = c. We also have
the solution y = 0 which we lost when we divided by y.

11. The equation is exact.

12. The equation is linear. The integrating factor is µ(x) = e
∫
dx = ex, which turns

the equation into exy′ + exy = (exy)′ = ex/(1 + ex). We can integrate the right
hand side by substituting u = 1 + ex, this gives us the solution yex = ln(1 + ex) + c,
i.e. y = ce−x + e−x ln(1 + ex).

13. The equation is separable.

14. The equation is exact.

15. The equation is separable.

16. The equation is exact.
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17. The equation is linear.

18. The equation is linear.

19. The equation is exact.

20. The equation is separable.

21. The equation is exact. Algebraic manipulations give us the symmetric form
(2y2 + 6xy − 4)dx+ (3x2 + 4xy + 3y2)dy = 0. We can check that My = 4y + 6x =
Nx. Integrating M with respect to x gives that ψ(x, y) = 2y2x+ 3x2y − 4x+ g(y),
then ψy = 4yx+ 3x2 + g′(y) = 3x2 + 4xy + 3y2, which means that g′(y) = 3y2, so
we obtain that g(y) = y3. Therefore the solution is 2xy2 + 3x2y − 4x+ y3 = c.

22. The equation is separable.

23. The equation is linear.

24. The equation is exact.

25. The equation is exact.

26. The equation is homogeneous. (See Section 2.2, Problem 30) We can write the
equation in the form y′ = y/x+ ey/x. We substitute u(x) = y(x)/x, which means
y = ux and then y′ = u′x+ u. We obtain the equation u′x+ u = u+ eu, which is
a separable equation. Separation of variables gives us e−udu = (1/x)dx, so after
integration we obtain that −e−u = ln |x|+ c and then substituting u = y/x back
into this we get the implicit solution e−y/x + ln |x| = c.

27. The equation can be made exact with an appropriate integrating factor. Alge-
braic manipulations give us the symmetric form xdx− (x2y + y3)dy = 0. We can
check that (My −Nx)/M = 2xy/x = 2y depends only on y, which means we will
be able to find an integrating factor in the form µ(y). This integrating factor is

µ(y) = e−
∫
2ydy = e−y

2

. The equation after multiplication becomes

e−y
2

xdx− e−y
2

(x2y + y3)dy = 0.

This equation is exact now, as we can check thatMy = −2ye−y
2

x = Nx. Integrating

M with respect to x gives that ψ(x, y) = e−y
2

x2/2 + g(y), then ψy = −e−y2x2y +

g′(y) = −e−y2(x2y + y3), which means that g′(y) = −y3e−y2 . We can integrate this
expression by substituting u = −y2, du = −2ydy. Integrating by parts, we obtain
that

g(y) = −
∫
y3e−y

2

dy = −
∫

1

2
ueudu = −1

2
(ueu − eu) + c =

−1

2
(−y2e−y

2

− e−y
2

) + c.

Therefore the solution is defined implicitly as e−y
2

x2/2− 1
2 (−y2e−y2 − e−y2) = c,
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or (after simplification) as e−y
2

(x2 + y2 + 1) = c. Remark: using the hint and
substituting u = x2 gives us du = 2xdx. The equation turns into 2(uy + y3)dy =
du, which is a linear equation for u as a function of y. The integrating factor is
e−y

2

and we obtain the same solution after integration.

28. The equation is linear or homogeneous; it can also be made exact by choosing
an appropriate integrating factor.

29. The equation is homogeneous.

30. The equation is homogeneous.

31. The equation can be made exact by choosing an appropriate integrating factor.

32. This is a Bernoulli equation. (See Section 2.4, Problem 27) If we substi-
tute u = y−1, then u′ = −y−2y′, so y′ = −u′y2 = −u′/u2 and the equation be-
comes −xu′/u2 + (1/u)− e2x/u2 = 0, and then u′ − u/x = −e2x/x, which is a lin-
ear equation. The integrating factor is e−

∫
(1/x)dx = e− ln x = 1/x, and we obtain

that (u′/x)− (u/x2) = (u/x)′ = −e2x/x2. The integral of the function on the right
hand side can not be expressed in a closed form using elementary functions, so we
have to express the solution using integrals. Let us integrate both sides of this
equation from 1 to x. We obtain that the left hand side turns into∫ x

1

(u(s)/s)′ds = (u(x)/x)− (u(1)/1) =
1

yx
− 1

y(1)
=

1

yx
− 1/2.

The right hand side gives us −
∫ x
1

[e2s/s2] ds. So we find that

1/y = −x
∫ x

1

[e2s/s2] ds+ (x/2).

34.(a) Using the idea of Problem 33, we obtain that y = t+ (1/v), and v satisfies
the differential equation v′ = −1. This means that v = −t+ c and then y = t+
(c− t)−1.

(b) Using the idea of Problem 33, we set y = (1/t) + (1/v), and then v satisfies
the differential equation v′ = −1− (v/t). This is a linear equation with integrating
factor µ(t) = t, and the equation turns into tv′ + v = (tv)′ = −t, which means that
tv = −t2/2 + c, so v = −(t/2) + (c/t) and y = (1/t) + (1/v) = (1/t) + 2t/(2c− t2).

(c) Using the idea of Problem 33, we set y = sin t+ (1/v). Then v satisfies the
differential equation v′ = − tan tv − 1/(2 cos t). This is a linear equation with inte-
grating factor µ(t) = 1/ cos t, which turns the equation into

v′/ cos t+ v sin t/ cos2 t = (v/ cos t)′ = −1/(2 cos2 t).

Integrating this we obtain that v = c cos t− (1/2) sin t, and the solution is y =
sin t+ (c cos t− (1/2) sin t)−1.
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42. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). The equation turns into
yv′v + v2 = 0, where the differentiation is with respect to y now. This is a separable
equation, separation of variables yields −dv/v = dy/y, and then − ln v = ln y + c̃,
so v = 1/(cy). Now this implies that y′ = 1/(cy), where the differentiation is with
respect to t. This is another separable equation and we obtain that cydy = 1dt, so
cy2/2 = t+ d and the solution is defined implicitly as y2 = c1t+ c2.

45. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). We obtain the equation
2y2v′v + 2yv2 = 1, where the differentiation is with respect to y. This is a Bernoulli
equation (See Section 2.4, Problem 27) and substituting z = v2 we get that z′ =
2vv′, which means that the equation reads y2z′ + 2yz = (y2z)′ = 1. Integration
yields v2 = z = (1/y) + (c/y2), so y′ = v = ±

√
y + c/y. This is a separable equa-

tion; separating the variables we get ±ydy/
√
y + c = dt and then the implicitly de-

fined solution is obtained by integration: ±((2/3)(y + c)3/2 − 2c(y + c)1/2) = t+ d.

47. Set y′ = v(y). Then y′′ = v′(y)(dy/dt) = v′(y)v(y). We obtain the equation
v′v + v2 = 2e−y, where the differentiation is with respect to y. This is a Bernoulli
equation (See Section 2.4, Problem 27) and substituting z = v2 we get that z′ =
2vv′, which means that the equation reads z′ + 2z = 4e−y. The integrating factor
is µ(y) = e2y, which turns the equation into e2yz′ + 2e2yz = (e2yz)′ = 4ey. Inte-
gration gives us v2 = z = 4e−y + ce−2y. This implies that y′ = v = ±e−y

√
c+ 4ey.

Separation of variables now shows that ±eydy/
√
c+ 4ey = dt. Integration and sim-

plification gives ±(1/2)(c+ 4ey)1/2 = t+ d. Algebraic manipulations then yield the
implicitly defined solution ey = (t+ c2)2 + c1.

48. Suppose that y′ = v(y) and then y′′ = v′(y)v(y). The equation is v2v′ = 2,
which gives us v3/3 = 2y + c. Now plugging 0 in place of t gives that 23/3 =
2 · 1 + c and we get that c = 2/3. This turns into v3 = 6y + 2, i.e. y′ = (6y + 2)1/3.
This separable equation gives us (6y + 2)−1/3dy = dt, and integration shows that
(1/6)(3/2)(6y + 2)2/3 = t+ d. Again, plugging in t = 0 gives us d = 1 and the
solution is (6y + 2)2/3 = 4(t+ 1). Solving for y here yields y = (4/3)(t+ 1)3/2 −
1/3.

51. Set v = y′, then v′ = y′′. The equation with this substitution is vv′ = t. Inte-
grating this separable differential equation we get that v2/2 = t2/2 + c, and c = 0
from the initial conditions. This implies that y′ = v = t, so y = t2/2 + d, and the
initial conditions again imply that the solution is y = t2/2 + 3/2.
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