1.

(a) Rewrite the equation as

$$
\frac{d y}{5-y}=d t
$$

and then integrate both sides. Doing so, we see that $-\ln |5-y|=t+c$. Applying the exponential function, we have $5-y=c e^{-t}$. Substituting in our initial condition $y(0)=y_{0}$, we have $5-y_{0}=c$. Therefore, our solution is $y(t)=5+\left(y_{0}-5\right) e^{-t}$.

(b) Rewrite the equation as

$$
\frac{d y}{5-2 y}=d t
$$

and then integrate both sides. Doing so, we see that $\ln |5-2 y|=-2 t+c$. Applying the exponential function, we have $5-2 y=c e^{-2 t}$. Substituting in our initial condition $y(0)=y_{0}$, we have $5-2 y_{0}=c$. Therefore, our solution is $y(t)=(5 / 2)+\left[y_{0}-(5 / 2)\right] e^{-2 t}$

(c) Rewrite the equation as

$$
\frac{d y}{10-2 y}=d t
$$

and then integrate both sides. Doing so, we see that $\ln |10-2 y|=-2 t+c$. Applying the exponential function, we have $10-2 y=c e^{-2 t}$. Substituting in our initial condition $y(0)=y_{0}$, we have $10-2 y_{0}=c$. Therefore, our solution is $y(t)=5+\left[y_{0}-5\right] e^{-2 t}$

The equilibrium solution is $y=5$ in (a) and (c), $y=5 / 2$ in (b). The solution approaches equilibrium faster in (b) and (c) than in (a).
2.
(a) Rewrite the equation as

$$
\frac{d y}{y-5}=d t
$$

and then integrate both sides. Doing so, we see that $\ln |y-5|=t+c$. Applying the exponential function, we have $y-5=c e^{t}$. Substituting in our initial condition $y(0)=y_{0}$, we have $y_{0}-5=c$. Therefore, our solution is $y(t)=5+\left[y_{0}-5\right] e^{t}$

(b) Rewrite the equation as

$$
\frac{d y}{2 y-5}=d t
$$

and then integrate both sides. Doing so, we see that $\ln |2 y-5|=2 t+c$. Applying the exponential function, we have $2 y-5=c e^{2 t}$. Substituting in our initial condition $y(0)=y_{0}$, we have $2 y_{0}-5=c$. Therefore, our solution is $y(t)=(5 / 2)+\left[y_{0}-(5 / 2)\right] e^{2 t}$

(c) Rewrite the equation as

$$
\frac{d y}{2 y-10}=d t
$$

and then integrate both sides. Doing so, we see that $\ln |2 y-10|=2 t+c$. Applying the exponential function, we have $2 y-10=c e^{2 t}$. Substituting in our initial condition $y(0)=y_{0}$, we have $2 y_{0}-10=c$. Therefore, our solution is $y(t)=5+\left[y_{0}-5\right] e^{2 t}$

The equilibrium solution is $y=5$ in (a) and (c), $y=5 / 2$ in (b); solution diverges from equilibrium faster in (b) and (c) than in (a).
3.
(a) Rewrite the equation as

$$
\frac{d y}{b-a y}=d t
$$

and then integrate both sides. Doing so, we see that $\ln |b-a y|=-a t+c$. Applying the exponential function, we have $b-a y=c e^{-a t}$, or $y=c e^{-a t}+(b / a)$
(b) Below we show solution curves for various initial conditions under the cases $a=1, b=1$, $a=5, b=1, a=1, b=5$ and $a=5, b=5$, respectively.

(c) (i) As a increases, the equilibrium is lower and is approached more rapidly. (ii) As b increases, the equilibrium is higher. (iii) As a and b increase, but a / b remains the same, the equilibrium remains the same and is approached more rapidly.
4.
(a) The equilibrium solution occurs when $d y / d t=a y-b=0$. Therefore, the equilibrium solution is $y_{e}=b / a$
(b) If $Y(t)=y-y_{e}$, then $Y^{\prime}(t)=y^{\prime}-y_{e}^{\prime}=y^{\prime}=a y-b=a\left(Y+y_{e}\right)-b=a Y+a y_{e}-b=$ $a Y+a(b / a)-b=0=a Y$. Therefore, Y satisfies the equation $Y^{\prime}=a Y$.
5. The solution of the homogeneous problem is $y=c e^{-2 t}$. Therefore, we assume the solution will have the form $y=c e^{-2 t}+A t+B$. Substituting a function of this form into the differential equation leads to the equation

$$
2 A t+A+2 B=t-3
$$

Equating like coefficients, we see that $A=1 / 2$ and $B=-7 / 4$. Therefore, the general solution is

$$
y=c e^{-2 t}+\frac{1}{2} t-\frac{7}{4}
$$

6. The solution of the homogeneous problem is $y=c e^{3 t}$. Therefore, we assume the solution will have the form $y=c e^{3 t}+A e^{-t}$. Substituting a function of this form into the differential equation leads to the equation

$$
-4 A e^{-t}=e^{-t}
$$

Equating like coefficients, we see that $A=-1 / 4$. Therefore, the general solution is

$$
y=c e^{3 t}-\frac{1}{4} e^{-t}
$$

7. The solution of the homogeneous problem is $y=c e^{-t}$. Therefore, we assume the solution will have the form $y=c e^{-t}+A \cos (2 t)+B \sin (2 t)$. Substituting a function of this form into the differential equation leads to the equation

$$
[-2 A+B] \sin (2 t)+[2 B+A] \cos (2 t)=3 \cos (2 t)
$$

Solving the two equations, $-2 A+B=0$ and $2 B+A=3$, we see that $A=3 / 5$ and $B=6 / 5$. Therefore, the general solution is

$$
y=c e^{-t}+\frac{3}{5} \cos (2 t)+\frac{6}{5} \sin (2 t)
$$

8. The solution of the homogeneous problem is $y=c e^{2 t}$. Therefore, we assume the solution will have the form $y=c e^{2 t}+A \cos (t)+B \sin (t)$. Substituting a function of this form into the differential equation leads to the equation

$$
[-A-2 B] \sin (t)+[B-2 A] \cos (t)=2 \sin (t)
$$

Solving the system of equations $-A-2 B=2$ and $B-2 A=0$, we see that $A=-2 / 5$ and $B=-4 / 5$. Therefore, the general solution is

$$
y=c e^{2 t}-\frac{2}{5} \cos (t)-\frac{4}{5} \sin (t)
$$

9. The solution of the homogeneous problem is $y=c e^{-2 t}$. Therefore, we assume the solution will have the form $y=c e^{-2 t}+A t+B+C \cos (t)-D \sin (t)$. Substituting a function of this form into the differential equation leads to the equation

$$
2 A t+[A+2 B]+[C+2 D] \cos (t)+[2 C-D] \sin (t)=2 t+3 \sin (t)
$$

Equating like coefficients, we see that $A=1, B=-1 / 2, C=6 / 5$ and $D=-3 / 5$. Therefore, the general solution is

$$
y=c e^{-2 t}+t-\frac{1}{2}+\frac{6}{5} \sin (t)-\frac{3}{5} \cos (t) .
$$

10. The solution of the homogeneous problem is $y=c e^{2 t}$. Therefore, we assume the solution will have the form $y=c e^{2 t}+A e^{t}+B t^{2}+C t+D$. Substituting a function of this form into the differential equation leads to the equation

$$
-A e^{t}-2 B t^{2}+[2 B-2 C] t+[C-2 D]=3 e^{t}+t^{2}+1
$$

Equating like coefficients, we see that $A=-3, B=-1 / 2, C=-1 / 2$ and $D=-3 / 4$. Therefore, the general solution is

$$
y=c e^{2 t}-3 e^{t}-\frac{1}{2} t^{2}-\frac{1}{2} t-\frac{3}{4} .
$$

11.

(a) The general solution is $p(t)=900+c e^{t / 2}$. Plugging in for the initial condition, we have $p(t)=900+\left(p_{0}-900\right) e^{t / 2}$. With $p_{0}=850$, the solution is $p(t)=900-50 e^{t / 2}$. To find the time when the population becomes extinct, we need to find the time T when $p(T)=0$. Therefore, $900=50 e^{T / 2}$, which implies $e^{T / 2}=18$, and, therefore, $T=2 \ln 18 \cong 5.78$ months.
(b) Using the general solution, $p(t)=900+\left(p_{0}-900\right) e^{t / 2}$, we see that the population will become extinct at the time T when $900=\left(900-p_{0}\right) e^{T / 2}$. That is, $T=2 \ln \left[900 /\left(900-p_{0}\right)\right]$ months
(c) Using the general solution, $p(t)=900+\left(p_{0}-900\right) e^{t / 2}$, we see that the population after 1 year (12 months) will be $p(6)=900+\left(p_{0}-900\right) e^{6}$. If we want to know the initial population which will lead to extinction after 1 year, we set $p(6)=0$ and solve for p_{0}. Doing so, we have $\left(900-p_{0}\right) e^{6}=900$ which implies $p_{0}=900\left(1-e^{-6}\right) \cong 897.8$
12.
(a) The general solution is $p(t)=p_{0} e^{r t}$, where t is measured in days. If the population doubles in 30 days, then $p(30)=2 p_{0}=p_{0} e^{30 r}$. Therefore, $r=(\ln 2) / 30$ day $^{-1}$.
(b) If the population doubles in N days, then $p(N)=2 p_{0}=p_{0} e^{N r}$. Therefore, $r=(\ln 2) / N$ day $^{-1}$
13.
(a) The solution is given by $v(t)=35\left(1-e^{-0.28 t}\right)$. The limiting velocity is $35 \mathrm{~m} / \mathrm{sec}$. Therefore, we want to find the time T when $v(T)=.98 \cdot 35=34.3 \mathrm{~m} / \mathrm{sec}$. Plugging this value into our equation for v, we have $34.3=35\left(1-e^{-0.28 T}\right)$, or $e^{-0.28 T}=.02$ which implies $T=(\ln 50) / 0.28 \cong 13.97 \mathrm{sec}$
(b) To find the position, we integrate the velocity function above. For $v(t)=35\left(1-e^{-0.28 t}\right)$, the height is given by $s(t)=\int v(t)=35 t+125 t e^{-0.28 t} d t+C$. Assuming, $s(0)=0$, we see that $c=-125$. Therefore, $s(t)=35 t+125 e^{-0.28 t}-125$. When $T=13.97$ seconds, we see that the distance traveled is approximately 366.5 m .
14.
(a) Assuming no air resistance, Newton's Second Law can be expressed as

$$
m \frac{d v}{d t}=m g
$$

where g is the gravitational constant. Dividing the above equation by m and assuming that the initial velocity is zero, we see that our initial value problem is $d v / d t=9.8$, $v(0)=0$
(b) We are assuming the object is released from a height of 300 meters above the ground. The height at a later time t satisfies $d s / d t=v=9.8 t$. Taking the point of release as the origin and integrating the above equation for s, we have $s(t)=4.9 t^{2}$. We need to find the time T when $s(T)=300$. That is, $4.9 T^{2}=300$. Solving this equation, we have $T=\sqrt{300 / 4.9} \cong 7.82 \mathrm{sec}$
(c) Using the equation $v=9.8 t$, we see that when $T \cong 7.82$ seconds, $v \cong 76.68 \mathrm{~m} / \mathrm{sec}$
15.
(a) If we are assuming that the drag force is proportional to the square of the velocity, equation (1) becomes

$$
m \frac{d v}{d t}=m g-\gamma v^{2}
$$

Plugging in $m=0.025, g=9.8$, the equation can be written as

$$
\frac{d v}{d t}=9.8-\frac{\gamma}{.025} v^{2}
$$

If the limiting velocity is $35 \mathrm{~m} / \mathrm{sec}$, then $\gamma(35)^{2}=9.8 \cdot .025$ which implies $\gamma=0.0002$. Therefore,

$$
\frac{d v}{d t}=9.8-0.008 v^{2}
$$

or

$$
\frac{d v}{d t}=\left[(35)^{2}-v^{2}\right] / 125
$$

(b) The equation can be rewritten as

$$
\frac{d v}{(35)^{2}-v^{2}}=\frac{d t}{125} .
$$

Integrating both sides, we have

$$
\ln \left|\frac{v+35}{v-35}\right|=\frac{70}{125} t+c
$$

Plugging in the initial condition $v(0)=0$, we have $c=0$. Applying the exponential function to both sides of the equation, we have

$$
v+35=e^{70 t / 125}(35-v)
$$

Solving this equation for v, we have

$$
v(t)=35\left[\frac{e^{70 t / 125}-1}{e^{70 t / 125}+1}\right]
$$

or

$$
v(t)=35\left[\frac{e^{35 t / 125}\left(e^{35 t / 125}-e^{-35 t / 125}\right)}{e^{35 t / 125}\left(e^{35 t / 125}+e^{-35 t / 125}\right)}\right]=35 \tanh (7 t / 25)
$$

(c) Below we show the graphs of $v(t)$ above (the top curve) and the solution to the problem in example 2 (the bottom curve)

(d) The quadratic force leads to the falling object attaining its limiting velocity sooner.
(e) The distance $x(t)=\int v(t) d t=\int 35 \tanh (7 t / 25) d t=125 \ln \cosh (7 t / 25)$.
(f) Plugging 300 in for $x(T)$ in the answer to part (d), we have $300=125 \ln \cosh (7 T / 25)$. Therefore, $T=(25 / 7) \operatorname{arccosh}\left(e^{12 / 5}\right) \cong 11.04 \mathrm{sec}$
16.
(a) The general solution of the equation is $Q(t)=c e^{-r t}$. Given that $Q(0)=100$, we have $c=100$. Assuming that $Q(1)=82.04$, we have $82.04=100 e^{-r}$. Solving this equation for r, we have $r=-\ln (82.04 / 100)=.19796$ per week or $r=0.02828$ per day.
(b) Using the form of the general solution and r found above, we have $Q(t)=100 e^{-0.02828 t}$
(c) Let T be the time it takes the isotope to decay to half of its original amount. From part (b), we conclude that $.5=e^{-0.2828 T}$ which implies that $T=-\ln (0.5) / 0.2828 \cong 24.5$ days
17. The general solution of the differential equation is $Q(t)=Q_{0} e^{-r t}$ where $Q_{0}=Q(0)$. Let τ be the half-life. Plugging τ into the equation for Q, we have $0.5 Q_{0}=Q_{0} e^{-r \tau}$. Therefore, $0.5=e^{-r \tau}$ which implies $\tau=-\ln (0.5) / r=\ln (2) / r$. Therefore, we conclude that $r \tau=\ln 2$.
18. The differential equation for radium- 226 is $d Q / d t=-r Q$. The solution of this equation is $Q(t)=Q_{0} e^{-r t}$. Using the result from exercise 17 and the fact that the half-life is 1620 years, we conclude that the decay rate $r=\ln (2) / \tau=\ln (2) / 1620$. Let T be the time it takes for the isotope to decay to $3 / 4$ of its original amount. Then

$$
\frac{3}{4} Q_{0}=Q_{0} e^{-\ln (2) T / 1620}
$$

which implies $T=-1620 \ln (3 / 4) / \ln (2) \cong 672.4$ years.
19.
(a) We rewrite the equation as

$$
\frac{d u}{u-T}=-k
$$

Integrating both sides, we have $\ln |u-T|=-k t+c$. Applying the exponential function to both sides of the equation and plugging in the initial condition $u(0)=u_{0}$, we arrive at the general solution $u(t)=T+\left(u_{0}-T\right) e^{-k t}$
(b) Since T is a constant, we see that if u satisfies the equation $d u / d t=-k(u-T)$, then $d(u-T) / d t=d u / d t=-k(u-T)$. Then using the result from exercise 17 above, we know that the relationship between the decay rate k and the time τ when the temperature difference is reduced by half satisfies the relationship $k \tau=\ln 2$.
20. Based on exercise 19 above, the differential equation for the temperature in the room is given by

$$
\frac{d u}{d t}=-.15(u-10)
$$

with an initial condition of $u(0)=70$. As shown in exercise 19 above, the solution is given by $u(t)=10+60 e^{-0.15 t}$. We need to find the time t such that $u(t)=32$. That is, $22=60 e^{-0.15 t}$. Solving this equation for t, we have $t=-\ln (22 / 60) / 0.15 \cong 6.69$ hours.
21.
(a) The solution of the differential equation with $q(0)=0$ is $q(t)=C V\left(1-e^{-t / R C}\right)$. Below we show a sketch in the case when $C=V=R=1$.

(b) As $t \rightarrow \infty$, the exponential term vanishes. Therefore, the limiting value is $q_{L}=C V$
(c) If the battery is removed, then $V=0$. Therefore, our differential equation is

$$
R \frac{d q}{d t}+\frac{q}{C}=0
$$

Also, we are assuming that $q\left(t_{1}\right)=q_{L}=C V$. Solving the differential equation, we have $q=c e^{-t / R C}$. Using the initial condition $q\left(t_{1}\right)=C V$, we have $q\left(t_{1}\right)=c e^{-t_{1} / R C}=C V$. Therefore, $c=C V e^{t_{1} / R C}$. We conclude that $q(t)=C V \exp \left[-\left(t-t_{1}\right) / R C\right]$ Below we show a graph of the solution taking $C=V=R=1$ and $t_{1}=5$.

22.
(a) The accumulation rate of the chemical is $(0.01)(300)$ grams per hour. At any given time t, the concentration of the chemical in the pond is $Q(t) / 10^{6}$ grams per gallon. Therefore, the chemical leaves the pond at the rate of $300 Q(t) / 10^{6}$ grams per hour. Therefore, the equation for Q is given by $Q^{\prime}=3\left(1-10^{-4} Q\right)$. Since initially there are no chemicals in the pond, $Q(0)=0$.
(b) Rewrite the equation as

$$
\frac{d Q}{10000-Q}=0.0003 d t
$$

Integrating both sides of this equation, we have $\ln |10000-Q|=-0.0003 t+C$. Applying the exponential function to both sides of this equation, we have $10000-Q=c e^{-0.0003 t}$. Assuming $Q(0)=0$, we see that $c=10000$. Therefore, $Q(t)=10000\left(1-e^{-0.0003 t}\right)$ where t is measured in hours. Since 1 year is 8760 hours, we see that the amount of chemical in the pond after 1 year is $Q(8760)=10000\left(1-e^{-0.0003 t}\right) \cong 9277.77$ grams.
(c) With the accumulation rate now equal to zero, the equation becomes $d Q / d t=-0.0003 Q(t)$ grams/hour. Resetting the time variable, we assign the new initial value as $Q(0)=$ 9277.77 grams.
(d) The solution of the differential equation is $Q(t)=9277.77 e^{-0.0003 t}$ after t hrs. Therefore, after 1 year $Q(8760) \cong 670.07 \mathrm{~g}$
(e) Letting T be the amount of time after the source is removed, we obtain the equation $10=9277.77 e^{-0.0003 t}$. Solving this equation, we have $T-\ln (10 / 9277.77) / 0.0003 \cong 2.60$ years

23.
(a) We are assuming that no dye is entering the pool. The rate at which the dye is leaving the pool is given by $200 \cdot(q / 60,000) \mathrm{g} / \mathrm{min}=q / 300 \mathrm{~g} / \mathrm{min}$. Since initially, there are 5 kg of the dye in the pool, the initial value problem is $q^{\prime}=-q / 300, q(0)=5000 \mathrm{~g}$
(b) The solution of this initial value problem is $q(t)=5000 e^{-t / 300}$ where g is in grams and t is in minutes.
(c) In 4 hours (240 minutes), the amount of dye in the pool will be $q(240) \cong 2246.6$ grams. Since there is 60,000 gallons of water in the pool, the concentration will be $2246.6 / 60,000 \cong 0.0374$ grams/gallon. So, no, the pool will not be reduced to the desired level within 4 hours.
(d) Let T be the time that it takes to reduce the concentration level of the dye to 0.02 grams/gallon. At that time, the amount of dye in the pool needs to be 1200 grams (as $1200 / 60000=0.02)$. Plugging $q(T)=1200$ into our equation for q, we have $1200=$ $5000 e^{-T / 300}$. Solving this equation, we have $T=300 \ln (25 / 6) \cong 7.136 \mathrm{hr}$
(e) Let r be the necessary $d w$ rate. As in part (a), if the water leaves the pool at the rate of r gallons/minute, then the initial value problem will be $q^{\prime}=-r q / 60,000, q(0)=5000$. The solution of this initial value problem is given by $q(t)=5000 e^{-r t / 60,000}$. We need to fid the decay rate r such that when $t=240$ minutes, the amount of dye $q=1200$ grams. That is, we need to solve the equation $1200=5000 e^{-240 r / 60,000}$. Solving this equation, we have $r=250 \ln (25 / 6) \cong 256.78 \mathrm{gal} / \mathrm{min}$

