Conversão de Energia I (TE-046) - Lista III

Prof.: MATEUS Duarte Teixeira Monitor: Wesley THIAGO Egea Tiem

2017/1

3 Máquinas Girantes de Corrente Contínua - Exercícios

- 1. Defina/responda:
 - a. FEM?
 - b. FCEM?
 - c. Lei de Lorentz?
 - d. Lei de Lenz?
 - e. Diferencie enrolamento de campo e enrolamento de armadura?
 - f. Como a intensidade do fluxo de campo influencia a rotação (velocidade) do motor?
 - g. Quais as vantagens e desvantagens dos motores em ligação série, derivação (Shunt) ou mista? Cite aplicações e desenhe o circuito esquemático de cada um.
 - h. Qual a utilidade do conjunto de comutação (anel segmentado + escovas) em um motor? E em um gerador?
- 2. Um motor em derivação com 20 HP (potência mecânica no eixo), 230 V, 1150 rpm, tem quatro pólos, quatro percursos de armadura paralelos e 882 condutores de armadura. A resistência do circuito de armadura é $0.188\,\Omega$. Na velocidade nominal e saída (carga) nominal, a corrente de armadura é de 73 A e a corrente e campo é $1.6\,\mathrm{A}$. Se a carga no eixo do motor da questão precedente permanecer fixa, mas o fluxo de campo for reduzido a 80% do seu valor, por meio do reostato de campo em série, qual é a nova velocidade de operação? $N=1414\,\mathrm{rpm}$
- 3. Um motor CC em série de 200 HP (potência mecânica no eixo), $550\,\mathrm{V}$ e $450\,\mathrm{rpm}$, solicita uma corrente da rede de $295\,\mathrm{A}$, para a saída nominal. As resistências dos enrolamentos de armadura e de campo série são $0.07\,\Omega$ e $0.04\,\Omega$, respectivamente.
 - a. Calcule a carga no eixo e o torque eletromagnético nominal.
 - b. Se o torque for reduzido a um quarto do valor nominal, calcule a nova velocidade.
- 4. Um motor shunt CC possuindo uma resistência de armadura de $0.25\,\Omega$ e uma queda de tensão nas escovas de $3\,\mathrm{V}$, recebe uma tensão aplicada de $120\,\mathrm{Vcc}$ através dos terminais da armadura. Calcule a corrente da armadura quando:
 - a. A velocidade produz uma feem (E_g) de 110 V para uma determinada carga; $I_a = 28 \,\mathrm{A}$
 - b. Há queda de velocidade (devido á aplicação adicional de carga) e a f
cem tem valor de 105 V; $I_a=48~\mathrm{A}$

- c. Qual a variação percentual da feem e da corrente de armadura entre as situações (a) e (b). $\Delta E_q(\%) = -4,55\%$, $\Delta I_a(\%) = +71,43\%$
- 5. Um motor (shunt CC), 120 Vcc, possui resistência de armadura e de campo de $0.2\,\Omega$ e $60\,\Omega$, respectivamente. Esse motor absorve da rede, a plena carga, corrente de $40\,\mathrm{A}$. A queda de tensão nas escovas na situação normal é de $3\,\mathrm{V}$. A velocidade a plena carga é de $1800\,\mathrm{rpm}$. Calcule:
 - a. A velocidade em situação de meia carga; $N_{50\%} = 1862,5 \,\mathrm{rpm}$
 - b. A velocidade em uma sobrecarga de 125%. $N_{125\%} = 1768,7 \,\mathrm{rpm}$
- 6. Considere que a esse motor (exercício 5) é aplicada uma carga, de modo a circular uma corrente de linha de 66 A. Para produzir torque necessário, o fluxo polar é aumentado em 12% através da redução de R_f para 50 Ω . Calcule a nova velocidade do motor CC. $N=1531,9\,\mathrm{rpm}$
- 7. Um motor CC de imã permanente tem uma resistência de armadura de $1,03\,\Omega$. Quando opera em vazio com uma fonte CC de $50\,\mathrm{V}$, observa-se que a velocidade de funcionamento é de $2100\,\mathrm{rpm}$ e a corrente é de $1,25\,\mathrm{A}$. Encontre:
 - a. as perdas rotacionais do motor a vazio;
 - b. a potência de saída do motor quando está operando a 1700 rpm a partir de uma fonte de 48 V.
- 8. Um gerador CC de excitação independente, $25\,\mathrm{kW}$ e $125\,\mathrm{V}$, opera com velocidade constante de $3000\,\mathrm{rpm}$ e uma corrente de campo constante tal que a tensão de armadura em circuito aberto seja de $125\,\mathrm{V}$. A resistência de armadura é $0.02\,\Omega$. Calcule a corrente de armadura, a potência de terminal, e a potência e o conjugado (torque) eletromagnéticos quando a tensão de terminal é:

```
a. 128 V; I_a=150\,\mathrm{A}; P_t=19,20\,\mathrm{kW}; P_m=18,75\,\mathrm{kW}; \tau=59,7\,\mathrm{N}\,\mathrm{m}
b. 124 V. I_a=50\,\mathrm{A}; P_t=6,20\,\mathrm{kW}; P_m=6,25\,\mathrm{kW}; \tau=19,9\,\mathrm{N}\,\mathrm{m}
```

- 9. A mesma máquina CC (exercício 8) está operando com velocidade de 2950 rpm, para a mesma corrente de campo. Para uma tensão de terminal de 125 V, calcule a corrente e a potência, ambas de terminal, e a potência eletromagnética da máquina. $I_t = 104 \,\mathrm{A};$ $P_t = 13.0 \,\mathrm{kW}; P_m = 12.8 \,\mathrm{kW}$
- 10. Um gerador com excitação em derivação, $100\,\mathrm{kW}$, tem resistência de armadura igual a $0.05\,\Omega$, resistência do enrolamento de campo igual a $57.5\,\Omega$. Se o gerador opera a tensão nominal de $230\,\mathrm{V}$, calcular a tensão induzida em situação de:
 - a. Plena carga; $E_g = 251,94\,\mathrm{V}$
 - b. Meia carga. $E_q = 241,07 \,\mathrm{V}$
- 11. Um gerador CC com excitação independente tem tensão terminal em vazio de 125 V, com uma corrente de campo de 2,1 A quando gira a 1600 rpm. Supondo que esta operando na porção linear da sua curva de magnetização, calcule:
 - a. A tensão terminal para quando a corrente de campo é aumentada para 2,6 A; $V_t = 154,76 \,\mathrm{V}$
 - b. A tensão gerada quando a velocidade é reduzida para 1450 rpm e a corrente de campo aumentada para 2,8 A. $V_t=151{,}07\,{\rm V}$

- 12. Um gerador de corrente contínua com excitação shunt, 4 pólos, 4 ranhuras, com 360 condutores, girando num campo de 13 mWb, alimenta uma carga de 12,5 kW a 125 V. A resistência do campo é $25\,\Omega$ e a resistência da armadura é $0,1\,\Omega$. A queda de tensão total devido ao contato das escovas e da reação da armadura para esta carga é de $3,5\,V$. Calcule:
 - a. A tensão induzida na armadura; $E_g = 139\,\mathrm{V}$
 - b. A velocidade em RPM da armadura (mesma do eixo); $N=1782\,\mathrm{rpm}$
 - c. O rendimento do gerador. $\eta(\%) = 85\%$