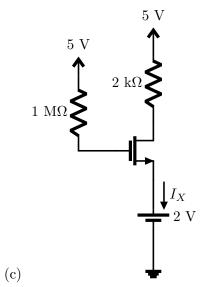
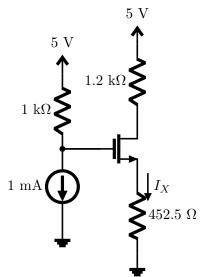
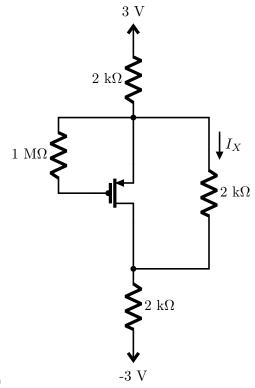
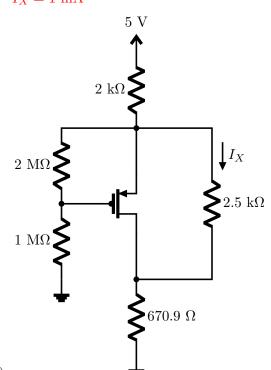

Exercícios TE324

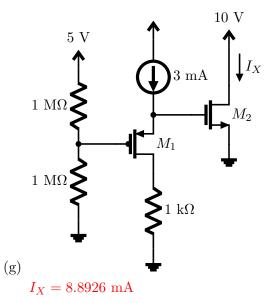

Transistores MOSFET e AmpOp

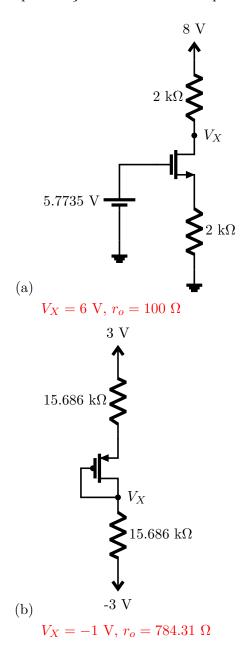
- 1. Um transistor MOSFET em saturação pode atuar como um amplificador? Justifique.
- 2. Para um transistor MOSFET canal N na configuração de amplificador fonte comum com resistor de degeneração, quais as tensões de fonte e de dreno tipicamente aplicadas em relação a V_{DD} ?
- 3. Para os circuitos abaixo, encontre a tensão V_X . Em todos os casos considere $|V_{BEon}|=0.7~V$ e $|V_{CEsat}|=0.2~\mathrm{V},~\beta=100$ e considere $V_A=100~\mathrm{V}.$
- 4. Um MOSFET canal N é chamado assim porque é feito com um substrato tipo N?
- 5. A polarização do corpo do MOSFET deve garantir que as junções PN estejam sempre polarizadas reversamente?
- 6. Quando o corpo do MOSFET é polarizado com uma tensão diferente da tensão de fonte ocorre uma mudança no canal do mosfet. Qual é o parâmetro da equação da corrente I_D que sofre alteração por causa da alteração da tensão de corpo?
- 7. Um MOSFET é capaz de conduzir corrente da porta para o substrato?
- 8. Quais as condições necessárias para garantir que o MOSFET está nas configurações de (a) corte, (b) chave fechada, ou triodo; e (c) em saturação, ou amplificador?
- 9. Quando um MOSFET está em corte, o que pode ser garantido sobre a corrente I_D ?
- 10. Encontre a corrente I_X das configurações a seguir. Em todos os casos, considere $\mu_n C_{ox} \frac{W}{L} = \mu_p C_{ox} \frac{W}{L} = 0.25 \text{ mA/V}^2 \text{ e } |V_{th}| = 1 \text{ V}$. Despreze a modulação do comprimento de canal e o efeito da polarização de corpo.

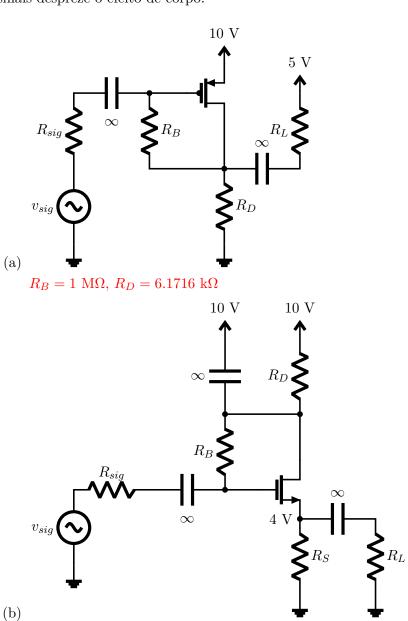


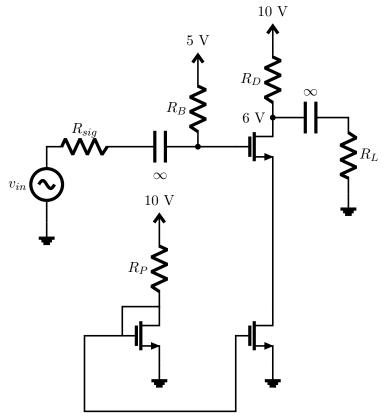

 $I_X = -0.5 \text{ mA}$


 $I_X = 0.5 \text{ mA}$

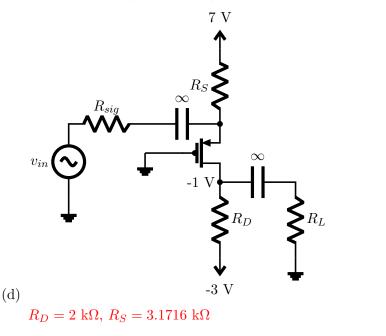

(d) $I_X = 1.4 \text{ mA}$


(e) $I_X = 1 \text{ mA}$

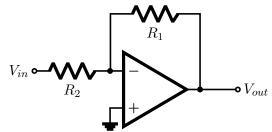

(f) $I_X = 0.749 \text{ mA}$


11. Para os circuitos abaixo, encontre a tensão V_X e desenhe o modelo de grandes sinais. Em todos os casos considere $\mu_n C_{ox} \frac{W}{L} = \mu_p C_{ox} \frac{W}{L} = 0.25 \text{ mA/V}^2$, $|V_{th}| = 1 \text{ V}$ e considere $V_A = 100 \text{ V}$ para obter a polarização do transistor. Despreze o efeito de corpo.

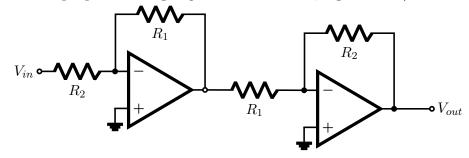
12. Para os circuitos abaixo, defina os resistores de polarização para garantir $I_D=1$ mA e desenhe o modelo de pequenos sinais. Em todos os casos considere $\mu_n C_{ox} \frac{W}{L} = \mu_p C_{ox} \frac{W}{L} = 0.25$ mA/V², $|V_{th}|=1$ V. Para definir o ponto de polarização despreze a modulação do comprimento de canal, para obter o modelo de pequenos sinais utilize $V_A=500$ V. Para polarização e para o modelo de pequenos sinais despreze o efeito de corpo.



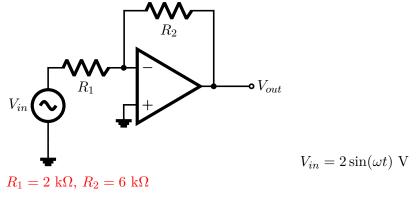
 $R_S=4~\mathrm{k}\Omega,\,R_D=2.1716~\mathrm{k}\Omega,\,R_B=1~\mathrm{M}\Omega$


As dimensões dos transistores de polarização são iguais. $R_P=6.1716~{\rm k}\Omega,~R_D=4~{\rm k}\Omega,~R_B=1~{\rm M}\Omega$

(c)

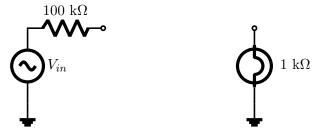


- 13. Um ampop ideal possui ganho de modo comum igual a infinito e ganho diferencial igual a zero?
- 14. Um ampop ideal existe um curto-circuito físico entre as entradas V^+ e V^- ?
- 15. Na configuração amplificadora Fonte comum, o ganho de A_V é baixo e a resistência de entrada é infinita?
- 16. Nas configurações fonte comum com R_S e emissor comum com R_E o ganho de tensão A_{V0} é influenciado pelas resistências de fonte e emissor, respectivamente?
- 17. Nas configurações fonte comum com R_S e emissor comum com R_E é possível modificar a resistência de entrada alterando as resistências de fonte e emissor, respectivamente?

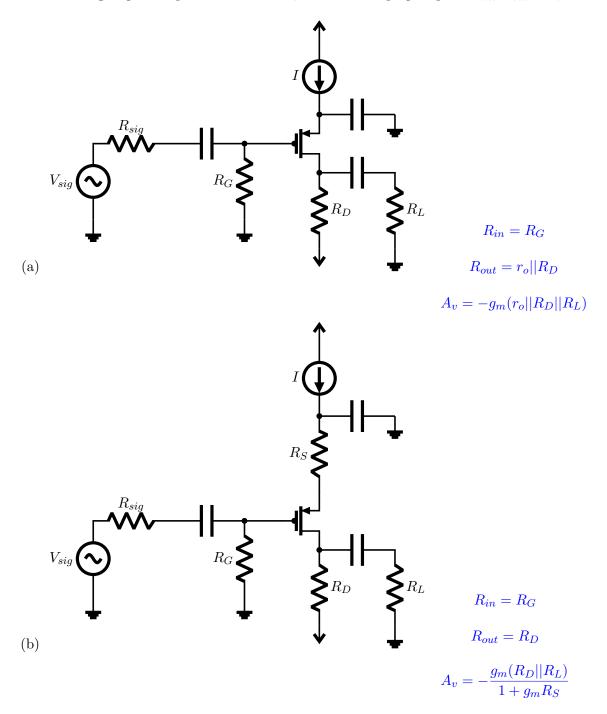

- 18. A configuração porta comum possui resistência de entrada alta e por isso não influencia o ganho global do circuito?
- 19. Qual a diferença do ganho A_V entre fonte comum e porta comum?
- 20. Cite as principais vantagens de cada configuração amplificadora com MOSFET;
- 21. Qual a melhor configuração para um buffer de tensão? Explique
- 22. Qual a melhor configuração para um buffer de corrente? Explique
- 23. Considere as configurações com Amp Op ideal abaixo e responda:
 - (a) Mostre que para a configuração indicada abaixo, o ganho $V_{out}/V_{in} = -R_1/R_2$

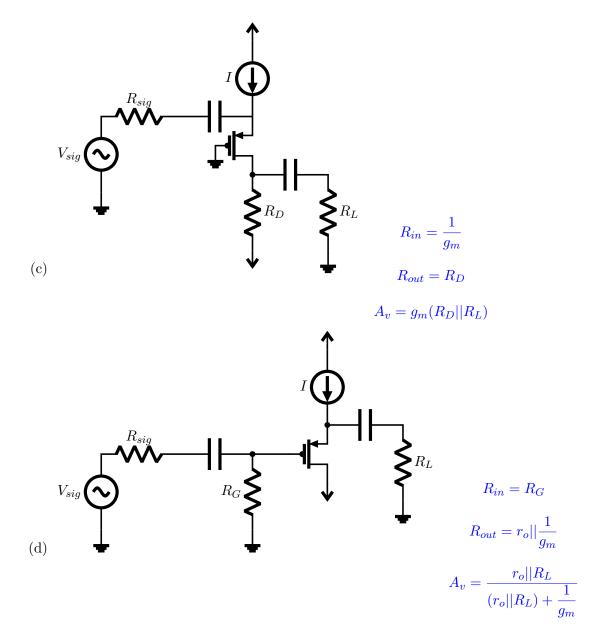
(b) Mostre que para a configuração indicada abaixo, o ganho $V_{out}/V_{in}=1$

(c) Especifique os valores dos resistores do circuito abaixo de forma que a corrente máxima emitida pela fonte de entrada seja de 1 mA e que o ganho seja de $3~{\rm V/V}$

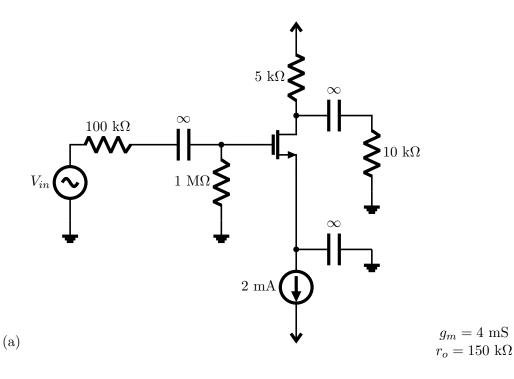


- (d) Projete um circuito para realizar a seguinte operação: $2V_{in1} V_{in2}$.
- (e) Sabendo que $V_{in}=3\sin(\omega t)+2$, qual será a equação de V_{out} da configuração abaixo

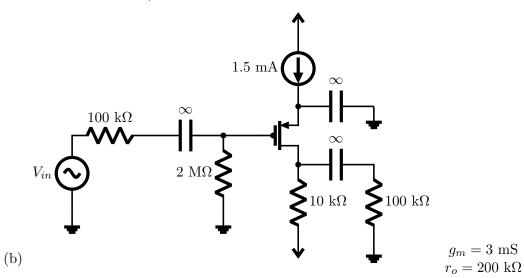


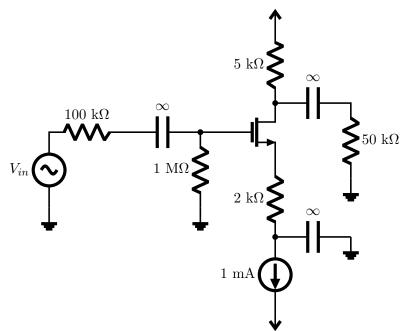

$V_{out} = 18\sin(\omega t) + 12$

(f) Um aluno quer acionar uma lâmpada utilizando um gerador de sinais. Mas ao conectar a lâmpada no gerador ele percebeu que a fonte possui uma resistência de saída muito alta para a aplicação que ele gostaria. Dessa forma o aluno decidiu utilizar um amp op ideal para garantir que a tensão na lâmpada seja igual a da lâmpada. Complete o circuito abaixo para acionar a lâmpada.



24. Para as configurações amplificadores abaixo, obtenha as equações para R_{in} , R_{out} e A_v

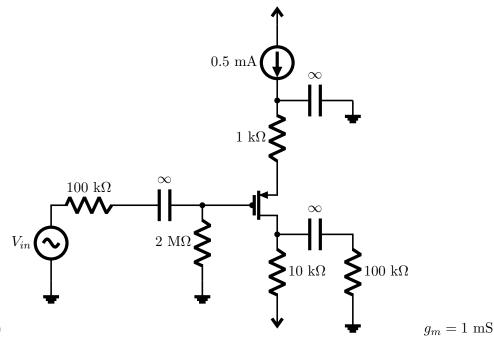



25. Para as configurações amplificadoras com MOSFET abaixo, monte o circuito equivalente de um amplificador de tensão.

$$R_{in} = 1 \text{ M}\Omega$$

$$R_{out} = 4838.7 \Omega$$

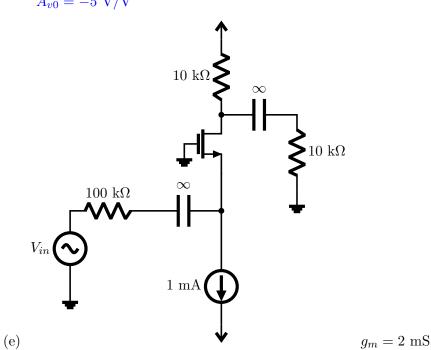
$$A_{v0} = -19.355 \text{ V/V}$$



$$R_{in} = 2 \text{ M}\Omega$$

$$R_{out} = 9523.8 \Omega$$

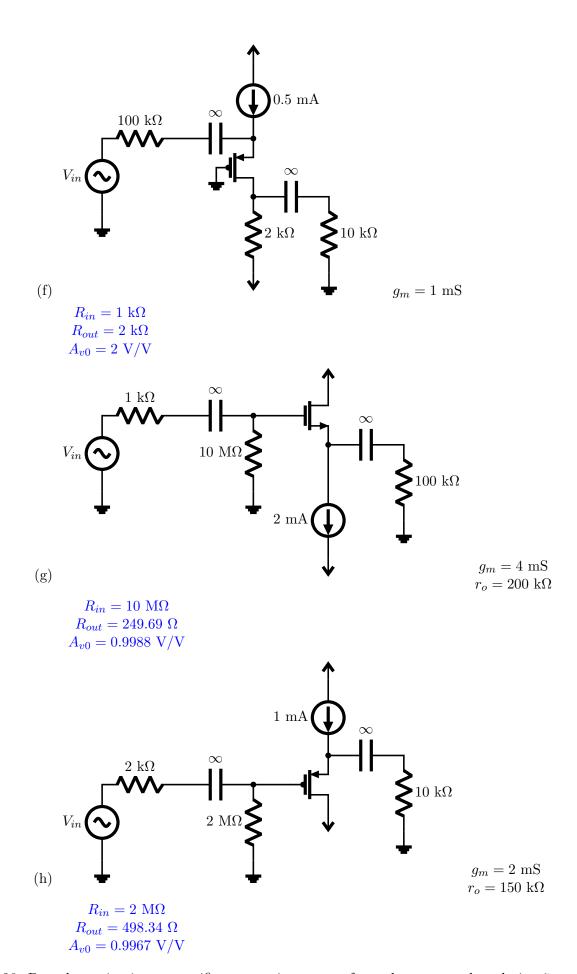
$$A_{v0} = -28.571 \text{ V/V}$$



(c)
$$R_{in} = 1 \text{ M}\Omega$$

$$R_{out} = 5000 \Omega$$

$$A_{v0} = -2 \text{ V/V}$$


 $g_m = 2 \text{ mS}$

(d) $R_{in} = 2 \text{ M}\Omega$ $R_{out} = 10 \text{ k}\Omega$ $A_{v0} = -5 \text{ V/V}$

 $R_{in} = 500 \Omega$ $R_{out} = 10 \text{ k}\Omega$ $A_{v0} = 20 \text{ V/V}$

26. Desenhe o circuito e especifique os resistores e a fonte de corrente de polarização para um circuito Fonte Comum para que $R_{in} > 1$ M Ω , $R_{out} = 2.5$ k Ω e $|A_v| = 10$ V/V. Desconsidere a modulação do comprimento de canal e considere $2\mu_p C_{ox}W/L = 2\mu_n C_{ox}W/L = 0.5$ mA/V².

$$R_G > 1 \text{ M}\Omega$$

 $R_D = 2.5 \text{ k}\Omega$
 $I_D = 32 \mu\text{A}$

27. Você deve acionar um fone de ouvido com um microfone de eletreto. O problema é que o fone de ouvido pode ser visto como uma carga de $10~\mathrm{k}\Omega$ e o circuito com o microfone como uma fonte de tensão com resistência de saída de $100~\mathrm{k}\Omega$. A tensão gerada pelo circuito com microfone possui tensão suficiente para acionar o fone de ouvido mas as impedâncias atrapalha. Especifique uma uma configuração amplificadora com MOSFET para fazer um buffer de tensão de forma que a resistência de entrada da configuração seja superior a $1~\mathrm{M}\Omega$ e que a resistência de saída seja menor que $1~\mathrm{k}\Omega$. Considere $r_o = 100~\mathrm{k}\Omega$ e $2\mu_p C_{ox} W/L = 2\mu_n C_{ox} W/L = 0.5~\mathrm{mA/V^2}$.

$$\begin{aligned} & \text{DC} \\ R_G > 1 \text{ M}\Omega \\ I = 1.9602 \text{ mA} \end{aligned}$$