TE061 - Introdução aos Sistemas de Energia Elétrica

Aula 05: Dados do SEB; Cenário internacional de energia elétrica; Modelos em regime permanente dos componentes de um SEE.

> Roman Kuiava, Prof. Dr. kuiava@eletrica.ufpr.br **DELT-UFPR**

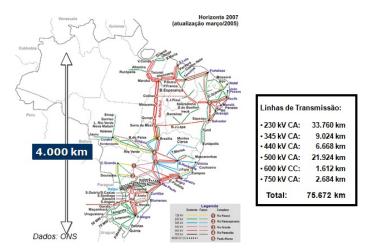


Figura: Sistema Integrado Nacional

Figura: Sistema Integrado Nacional

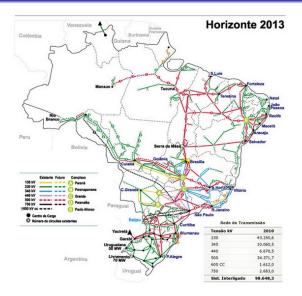


Figura : Sistema Integrado Nacional

- As linhas de transmissão no Brasil costumam ser extensas, porque as grandes usinas hidrelétricas geralmente estão situadas a distâncias consideráveis dos centros consumidores de energia. Hoje o país está quase que totalmente interligado, de norte a sul.
- Sistema Norte Centro-oeste: o primeiro circuito de interligação,

- As linhas de transmissão no Brasil costumam ser extensas, porque as grandes usinas hidrelétricas geralmente estão situadas a distâncias consideráveis dos centros consumidores de energia. Hoje o país está quase que totalmente interligado, de norte a sul.
- Sistema Norte Centro-oeste: o primeiro circuito de interligação, conhecido por Linhão Norte-Sul, foi construído em 500kV, com 1.277km de extensão, capacidade de transmissão de 1.100MW e com transferência média de 600MW e inaugurado em 1999. O circuito interliga o estado de Tocantins ao Distrito Federal.

- Sistema Norte Centro-oeste: Em março de 2004 foi inaugurado o segundo circuito de interligação norte-sul II, com 1278km de extensão, operando em 500kV, passando pelas SE Imperatriz, no Maranhão, Colinas, Miracema e Gurupi, no Tocantins, Serra da Mesa em Goiás. e Samambaia em Brasília.
- Sistema Norte Centro-oeste: os circuitos em 500kV desta Tocantins com potência instalada de 902,5MW. A UHE de

- Sistema Norte Centro-oeste: Em marco de 2004 foi inaugurado o segundo circuito de interligação norte-sul II, com 1278km de extensão, operando em 500kV, passando pelas SE Imperatriz, no Maranhão, Colinas, Miracema e Gurupi, no Tocantins, Serra da Mesa em Goiás. e Samambaia em Brasília.
- Sistema Norte Centro-oeste: os circuitos em 500kV desta interligação transmitem energia da UHE de Lajeado, localizada no rio Tocantins, entre os municípios de Lajeado e Miracema do Tocantins com potência instalada de 902,5MW. A UHE de Lajeado é o maior empreendimento de geração realizado pela iniciativa privada no Brasil.

- A interligação Sudeste-Nordeste compreende aproximadamente
 1.062km de linhas de transmissão de 500kV, que se estendem da subestação Serra da Mesa, em Goiás, até a subestação de Sapeaçu, na Bahia, e cinco subestações.
- O sistema interligado Sudeste Centro-oeste concentra pelo menos 60% da demanda de energia no Brasil.
- Sistema Sul-Sudeste: energia transferida da usina de Itaipu (2 circuitos em CC em 600kV ligando a usina a São Roque (SP), 3 circuitos em 765kV ligando a usina a Tijuco Preto). As linhas são de propriedade de Furnas.
- Sistema Nordeste: hoje a regiao Nordeste importa energia elétrica das hidrelétricas de Lajeado, em Tocantins, Cana Brava, em Goiás, e Tucuruí I e II, no Pará.

- A interligação Sudeste-Nordeste compreende aproximadamente 1.062km de linhas de transmissão de 500kV, que se estendem da subestação Serra da Mesa, em Goiás, até a subestação de Sapeaçu, na Bahia, e cinco subestações.
- O sistema interligado Sudeste Centro-oeste concentra pelo menos 60% da demanda de energia no Brasil.
- Sistema Sul-Sudeste: energia transferida da usina de Itaipu (2 circuitos em CC em 600kV ligando a usina a São Roque (SP), 3 circuitos em 765kV ligando a usina a Tijuco Preto). As linhas são de propriedade de Furnas.
- Sistema Nordeste: hoje a regiao Nordeste importa energia elétrica das hidrelétricas de Lajeado, em Tocantins, Cana Brava, em Goiás, e Tucuruí I e II, no Pará.

- A interligação Sudeste-Nordeste compreende aproximadamente
 1.062km de linhas de transmissão de 500kV, que se estendem da subestação Serra da Mesa, em Goiás, até a subestação de Sapeaçu, na Bahia, e cinco subestações.
- O sistema interligado Sudeste Centro-oeste concentra pelo menos 60% da demanda de energia no Brasil.
- Sistema Sul-Sudeste: energia transferida da usina de Itaipu (2 circuitos em CC em 600kV ligando a usina a São Roque (SP), 3 circuitos em 765kV ligando a usina a Tijuco Preto). As linhas são de propriedade de Furnas.
- Sistema Nordeste: hoje a regiao Nordeste importa energia elétrica das hidrelétricas de Lajeado, em Tocantins, Cana Brava, em Goiás, e Tucuruí I e II, no Pará.

- A interligação Sudeste-Nordeste compreende aproximadamente
 1.062km de linhas de transmissão de 500kV, que se estendem da subestação Serra da Mesa, em Goiás, até a subestação de Sapeaçu, na Bahia, e cinco subestações.
- O sistema interligado Sudeste Centro-oeste concentra pelo menos 60% da demanda de energia no Brasil.
- Sistema Sul-Sudeste: energia transferida da usina de Itaipu (2 circuitos em CC em 600kV ligando a usina a São Roque (SP), 3 circuitos em 765kV ligando a usina a Tijuco Preto). As linhas são de propriedade de Furnas.
- Sistema Nordeste: hoje a regiao Nordeste importa energia elétrica das hidrelétricas de Lajeado, em Tocantins, Cana Brava, em Goiás, e Tucuruí I e II, no Pará.

<u>Sistema Integrado Nacional (SIN) - 2012</u>

- Grande parte da região norte e uma parcela reduzida da região Centro-oeste, além de algumas pequenas localidades esparsas pelo território brasileiro, ainda não fazem parte do sistema interligado.
- A existência desses sistemas isolados, em algumas situações, como é

- Grande parte da região norte e uma parcela reduzida da região Centro-oeste, além de algumas pequenas localidades esparsas pelo território brasileiro, ainda não fazem parte do sistema interligado.
- A existência desses sistemas isolados, em algumas situações, como é o caso dos sistemas das cidades de Manaus, Boa Vista (Roraima) e Porto Velho (Rondônia), assumem proporções de relativa significância, com demandas superiores a 100 MW, em grande parte responsável pela predominância da geração termelétrica a diesel.
- Para atender às políticas externa e energética, o Brasil está

- Grande parte da região norte e uma parcela reduzida da região Centro-oeste, além de algumas pequenas localidades esparsas pelo território brasileiro, ainda não fazem parte do sistema interligado.
- A existência desses sistemas isolados, em algumas situações, como é o caso dos sistemas das cidades de Manaus, Boa Vista (Roraima) e Porto Velho (Rondônia), assumem proporções de relativa significância, com demandas superiores a 100 MW, em grande parte responsável pela predominância da geração termelétrica a diesel.
- Para atender às políticas externa e energética, o Brasil está interligado aos países vizinhos como Venezuela (para fornecimento a Manaus e Boa Vista), Argentina, Uruguai, e Paraguai.

Vantagens dos sistemas interligados:

- Vantagens dos sistemas interligados:
 - ⇒ Aumento da estabilidade: sistema torna-se mais robusto podendo absorver, sem perda de sincronismo, maiores impactos elétricos.
 - ⇒ Aumento da confiabilidade: permite a continuidade do servico

- Vantagens dos sistemas interligados:
 - ⇒ Aumento da estabilidade: sistema torna-se mais robusto podendo absorver, sem perda de sincronismo, maiores impactos elétricos.
 - ⇒ Aumento da confiabilidade: permite a continuidade do serviço em decorrência da falha ou manutenção de equipamento, ou ainda devido às alternativas de rotas para fluxo da energia.

- Vantagens dos sistemas interligados:
 - ⇒ **Aumento da estabilidade:** sistema torna-se mais robusto podendo absorver, sem perda de sincronismo, maiores impactos elétricos.
 - ⇒ Aumento da confiabilidade: permite a continuidade do serviço em decorrência da falha ou manutenção de equipamento, ou ainda devido às alternativas de rotas para fluxo da energia.
 - ⇒ Mais econômico: permite o intercâmbio de energia entre áreas distantes do sistema.

- Desvantagens dos sistemas interligados:

- Desvantagens dos sistemas interligados:
 - ⇒ Distúrbio em um sistema afeta os demais sistemas interligados.

- Desvantagens dos sistemas interligados:
 - ⇒ Distúrbio em um sistema afeta os demais sistemas interligados.
 - ⇒ A operação e proteção tornam-se mais complexas.

- O sistema de produção de energia elétrica do Brasil pode ser classificado como um sistema hidrotérmico de grande porte, com forte predominância de usinas hidrelétricas e com múltiplos proprietários.
- A maior parte da capacidade instalada é composta por usinas hidrelétricas, que se distribuem em 14 diferentes bacias hidrográficas nas diferentes regiões do país de maior atratividade econômica.
- A capacidade de geração do Brasil em 2010 é de 110.053MW de potência, com um total de 2.100 empreendimentos em operação.

- O sistema de produção de energia elétrica do Brasil pode ser classificado como um sistema hidrotérmico de grande porte, com forte predominância de usinas hidrelétricas e com múltiplos proprietários.
- A maior parte da capacidade instalada é composta por usinas hidrelétricas, que se distribuem em 14 diferentes bacias hidrográficas nas diferentes regiões do país de maior atratividade econômica.
- A capacidade de geração do Brasil em 2010 é de 110.053MW de potência, com um total de 2.100 empreendimentos em operação.

- O sistema de produção de energia elétrica do Brasil pode ser classificado como um sistema hidrotérmico de grande porte, com forte predominância de usinas hidrelétricas e com múltiplos proprietários.
- A maior parte da capacidade instalada é composta por usinas hidrelétricas, que se distribuem em 14 diferentes bacias hidrográficas nas diferentes regiões do país de maior atratividade econômica.
- A capacidade de geração do Brasil em 2010 é de 110.053MW de potência, com um total de 2.100 empreendimentos em operação.

Evolução da capacidade instalada no Brasil:

Capacidade Instalada de 1999 a 2007 (MW)			
Ano Potência (MW)			
1999	67.946,4		
2000	72.299,0		
2001	74.876,7		
2002	80.314,9		
2003	83.807,1		
2004	90.678,5		
2005	92.865,5		
2006	96.294,5		
2007	100.352,4		

Figura: Capacidade instalada no Brasil de 1999 à 2007 (Fonte: ANEEL).

Matriz de energia elétrica brasileira

Matriz de energia elétrica brasileira (2012):

Empreendimentos em Operação										
Tipo		Capacidade Instalada N.° de Usinas (kW)		%	Total					
					N.º de Usinas	(kW)	%			
Hidro		972	82.370.591	65,74	972	82.370.591	65,75			
Gás	Natural	104	11.427.953	9,12	440	143	440	13,225,136	10.56	
	Processo	39	1.797.183	1,43	143	13.225.130	10,56			
D-t-fl	Óleo Diesel	904	3.158.990	2,52	938	938	938	000	7.095.301	5.66
Petróleo	Öleo Residual	34	3.936.311	3,14				7.095.301	5,00	
	Bagaço de Cana	348	7.267.988	5,8	431	431 8				
	Licor Negro	14	1.245.198	0,99			8.998.637			
Biomassa	Madeira	43	376.535	0,3			431	431	8.998.037	7,18
	Biogás	18	76.308	0,06				1 1		
	Casca de Arroz	8	32.608	0,03						
Nuclear		2	2.007.000	1,6	2	2.007.000	1,6			
<u>Carvão</u> Mineral	Carvão Mineral	10	1.944.054	1,55	10	1.944.054	1,55			
Eólica		73	1.471.192	1,17	73	1.471.192	1,17			
	Paraguai	$\overline{}$	5.650.000	5,46						
Importaç ão	Argentina		2.250.000	2,17	8.170.000					
	Venezuela		200.000	0,19		8.170.000	6,52			
	Uruguai		70.000	0,07						
	Total	2.579	125.287.756	100	2.579	125.287.756	100			

Figura : Matriz de energia elétrica brasileira.

Matriz de energia elétrica brasileira

Matriz de energia elétrica brasileira (2012):

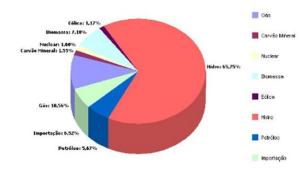


Figura : Matriz de energia elétrica brasileira.

Maiores agentes de geração de capacidade instalada no Brasil:

Νº	Agentes do Setor	Potencia Instalada (kW)	
1º	Companhia Hidro Elétrica do São Francisco CHESF	10.615.131	
2º	Furnas Centrais Elétricas S/A. FURNAS	9.703.000	
3º	Centrais Elétricas do Norte do Brasil S/A. ELETRONORTE	9.217.381,10	
4º	Companhia Energética de São Paulo CESP	7.455.300	
5°	Itaipu Binacional ITAIPU	7.000.000	
6º	Tractebel Energia S/ATRACTEBEL	6.965.350	
7º	CEMIG Geração e Transmissão S/A CEMIG-GT	6.781.584	
8º	Petróleo Brasileiro S/APETROBRÁS	5.291.067,60	
9º	Copel Geração e Transmissão S.A.COPEL-GT	4.544.870	
10°	AES Tietê S/AAES TIETÊ	2.645.050	

Figura: Maiores agentes de capacidade instalada no Brasil (Fonte: ANEEL).

• **COPEL:** O Agente Copel Geração e Transmissão S.A. possui no total 21 empreendimentos. A sua capacidade de geração representa 4,3714% da capacidade do País.

	Empreendimentos	
Fase	Quantidade	Potência (kW)
Construção	3	680.000
Operação	18	4.547.270
Total	21	5.227.270

Estados onde o Agente possui usinas As usinas localizadas em divisa de Estado do Brasil estão quantificada para ambos os Estados.			
Estado	Nº de usinas		
MT	1 (Construção)		
PR	2 (Construção)		
PR	18 (Operação)		

Figura: Dados da Copel Geração e Transmissão S.A. (Fonte: ANEEL).

 As usinas em construção são: Cavernoso II (PCH/19MW, municípios de Candói e Virmond); Colíder (UHE/300MW, municípios de Nova Canaã do Norte - MT); Mauá (UHE/361MW, municípios de Ortigueira e Telêmaco Borba).

Figura: Bacias hidrográficas em potencial > < 3 > < 3 > 3

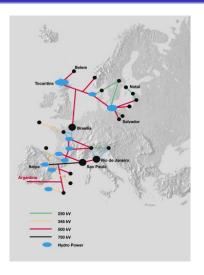


Figura : Sistema de transmissão brasileiro e bacias hidrográficas sobre o mapa europeu. ∢□▶ ∢圖▶ ∢團▶ ∢團▶ ■

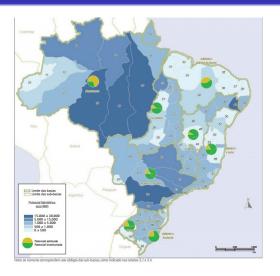


Figura: Potencial hidrelétrico brasileiro por sub-bacia hidrográfica (fonte: ANEEL). ◆□→ ◆□→ ◆□→ ◆□→ □

Bacia Hidrográfica	(MW)	(%)
Rio Amazonas	592	0,98
Rio Tocantins	5.394	8,91
Altântico N/NE	303	0,50
Rio São Francisco	10.473	17,31
Atlântico Leste	2.367	3,91
Rio Paraná	38.580	63,76
Rio Uruguai	294	0,49
Atlântico Sudeste	2.508	4,15
Total	60.511	100,00

Figura : Potencial existente e capacidade instalada em alguns rios do país (MW) (Fonte: ANEEL, 2001).

Bacia Hidrográfica	Existente [b] (MW)	Aproveitado [c] (MW)	[c/a]	[c/b]
Bacia do Rio Amazonas	105.410	592	0,02	0,01
Bacia do Rio Tocantins	27.540	5.394	0,22	0,20
Bacia do Altântico Norte/Nordeste	3.402	303	0,15	0,09
Bacia do Rio São Francisco	26.319	10.473	0,44	0,40
Bacia do Atlântico Leste	14.092	2.367	0,20	0,17
Bacia do Rio Paraná	60.378	38.580	0,75	0,64
Bacia do Rio Uruguai	13.337	294	0,03	0,02
Bacia do Atlântico Sudeste	9.617	2.508	0,34	0,26
Brasil	260.095	60.511	0,37	0,23

Figura : Potenciais existente e aproveitado e índices de aproveitamento por bacia (Fonte: ANEEL).

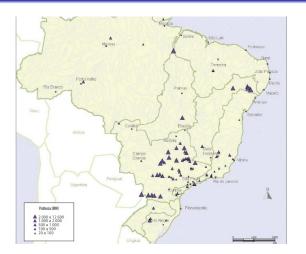
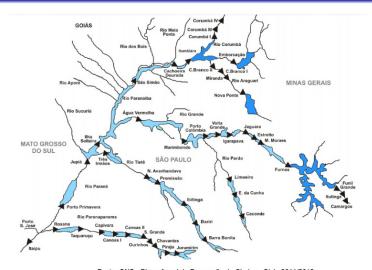



Figura : Usinas hidrelétricas por classe de potência e bacia hidrográfica (Fonte: ANEEL).

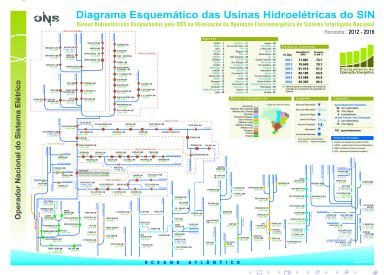


Figura: Localização dos pequenos aproveitamentos hidrelétricos (micro e PCHs) existentes no Brasil (Fonte: ANEEL).

Fonte: ONS - Plano Anual de Prevenção de Cheias - Ciclo 2011/2012

• Diagrama esquemático das Usinas Hidroelétricas do SIN:

• Maiores usinas hidroelétricas do país:

Usina	Localização	Capacidade	Suficiente para abastecer cidade de:
Tucuruí	Rio Tocantins	8.370 MW	16,7 milhões de pessoas
Itaipu Binacional /Parte brasileira	Rio Paraná	7.000 MW	14 milhões de pessoas
Ilha Solteira	Rio Paraná	3.440 MW	6,88 milhões de pessoas
Xingó	Rio São Francisco	3.162 MW	6,32 milhões de pessoas
Paulo Afonso	Rio São Francisco	3.984 MW	7,96 milhões de pessoas

Figura: Fonte: ANEEL.

• Maiores empreendimentos:

Usina	Localização	Capacidade	Suficiente para abastecer cidade de:
Belo Monte	Rio Xingu	11.233 MW	22,5 milhões de pessoas
São Luiz do Tapajós	Rio Tapajós	7.880 MW	15,76 milhões de pessoas
Jirau	Rio Madeira	3.750 MW	7,5 milhões de pessoas
Santo Antônio	Rio Madeira	3.150 MW	6,3 milhões de pessoas
Jatobá	Rio Tapajós	2.338 MW	4,67 milhões de pessoas

Figura: Fonte: ANEEL.

Figura: Usinas termelétricas a biomassa e potencial de geração por Estado (Fonte: ANEEL).

Figura: Potencial de geração de excedentes de eletricidade no setor sucroalcooleiro do Brasil(Fonte: ANEEL).

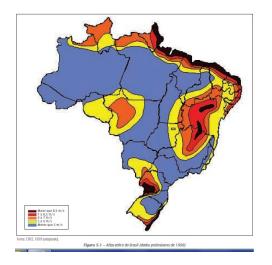


Figura: Atlas eólico do Brasil (Fonte: ANEEL).

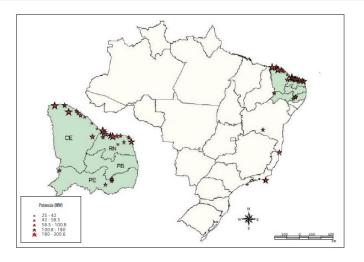


Figura : Localização dos projetos eólicos outorgados no Brasil em 2004 (Fonte: ANEEL).

Figura: Centrais termelétricas a derivados de petróleo em operação no Brasil (Fonte: ANEEL).

Sistema de transmissão no Brasil

 As linhas de transmissão no Brasil costumam ser extensas, porque as grandes usinas hidrelétricas geralmente estão situadas a distâncias consideráveis dos centros consumidores de energia.

Principais empresas	Total de km por linhas
Furnas	19.419
Chesf	18.723
CTEEP	12.316
Eletronorte	10.234
Eletrosul	10.006
Cemig	7.506
CEEE	6.055
Copel	1.792

- Os sistemas de distribuição de energia elétrica no Brasil incluem todas as redes e linhas de distribuição de energia elétrica em tensão inferior a 230kV:

- Os sistemas de distribuição de energia elétrica no Brasil incluem todas as redes e linhas de distribuição de energia elétrica em tensão inferior a 230kV:
 - ⇒ Alta tensão (AT): Tensão entre fases cujo valor eficaz é igual ou superior a 69 kV e inferior a 230 kV;

- Os sistemas de distribuição de energia elétrica no Brasil incluem todas as redes e linhas de distribuição de energia elétrica em tensão inferior a 230kV:
 - ⇒ **Alta tensão (AT):** Tensão entre fases cujo valor eficaz é igual ou superior a 69 kV e inferior a 230 kV;
 - ⇒ Média tensão (MT): Tensão entre fases cujo valor eficaz é superior a 1kV e inferior a 69kV;
 - ⇒ Baixa tensão (BT): Tensão entre fases cujo valor eficaz é igual ou inferior a 1kV.

- Os sistemas de distribuição de energia elétrica no Brasil incluem todas as redes e linhas de distribuição de energia elétrica em tensão inferior a 230kV:
 - ⇒ Alta tensão (AT): Tensão entre fases cujo valor eficaz é igual ou superior a 69 kV e inferior a 230 kV;
 - ⇒ Média tensão (MT): Tensão entre fases cujo valor eficaz é superior a 1kV e inferior a 69kV;
 - ⇒ Baixa tensão (BT): Tensão entre fases cujo valor eficaz é igual ou inferior a 1kV.

 O Brasil possui atualmente 39 agentes de distribuição. Os maiores são:

Nº	Empresa	Consumo em GWh
1º	Eletropaulo	32.548
2°	Cemig	20.693
3°	CPFL	18.866
4°	Copel	18.523
5°	Light	18.235
6°	Celesc	13.829
7°	Coelba	11.403
8°	Elektro	10.055
9°	Celpe	8.171
10°	Piratininga	8.015

Figura: Dez Maiores agentes de distribuição do país (por consumo) (Fonte ABRADEE, 2007).

Figura : Áreas de abrangência das concessionárias de distribuição de energia elétrica (Fonte ANEEL, 2005).

- A estrutura do serviço de energia no Paraná, fornecido pela Copel, compreende a operação de um parque gerador próprio composto por 18 usinas, sendo 17 delas hidrelétricas, cuja potência instalada totaliza 4.550 MW, e que responde pela produção de algo como 7% de toda eletricidade consumida no Brasil.
- O sistema de transmissão totaliza 1.942km de linhas e 30 subestações.
- O sistema de distribuição possui 348 subestações e 179.351km de linhas.
- O atendimento da Copel atende mais de 3,6 milhões de unidades consumidoras em 393 municípios e 1.109 localidades (distritos, vilas e povoados) paranaenses.
- Detalhes do sistema elétrico paranaense: ver arquivo SistemaSul.pdi (obtido em www.ons.org.br).

- A estrutura do serviço de energia no Paraná, fornecido pela Copel, compreende a operação de um parque gerador próprio composto por 18 usinas, sendo 17 delas hidrelétricas, cuja potência instalada totaliza 4.550 MW, e que responde pela produção de algo como 7% de toda eletricidade consumida no Brasil.
- O sistema de transmissão totaliza 1.942km de linhas e 30 subestações.
- O sistema de distribuição possui 348 subestações e 179.351km de linhas.
- O atendimento da Copel atende mais de 3,6 milhões de unidades consumidoras em 393 municípios e 1.109 localidades (distritos, vilas e povoados) paranaenses.

- A estrutura do serviço de energia no Paraná, fornecido pela Copel, compreende a operação de um parque gerador próprio composto por 18 usinas, sendo 17 delas hidrelétricas, cuja potência instalada totaliza 4.550 MW, e que responde pela produção de algo como 7% de toda eletricidade consumida no Brasil.
- O sistema de transmissão totaliza 1.942km de linhas e 30 subestações.
- O sistema de distribuição possui 348 subestações e 179.351km de linhas.
- O atendimento da Copel atende mais de 3,6 milhões de unidades consumidoras em 393 municípios e 1.109 localidades (distritos, vilas e povoados) paranaenses.

- A estrutura do serviço de energia no Paraná, fornecido pela Copel, compreende a operação de um parque gerador próprio composto por 18 usinas, sendo 17 delas hidrelétricas, cuja potência instalada totaliza 4.550 MW, e que responde pela produção de algo como 7% de toda eletricidade consumida no Brasil.
- O sistema de transmissão totaliza 1.942km de linhas e 30 subestações.
- O sistema de distribuição possui 348 subestações e 179.351km de linhas.
- O atendimento da Copel atende mais de 3,6 milhões de unidades consumidoras em 393 municípios e 1.109 localidades (distritos, vilas e povoados) paranaenses.
- Detalhes do sistema elétrico paranaense: ver arquivo SistemaSul.pdf (obtido em www.ons.org.br).

- A estrutura do serviço de energia no Paraná, fornecido pela Copel, compreende a operação de um parque gerador próprio composto por 18 usinas, sendo 17 delas hidrelétricas, cuja potência instalada totaliza 4.550 MW, e que responde pela produção de algo como 7% de toda eletricidade consumida no Brasil.
- O sistema de transmissão totaliza 1.942km de linhas e 30 subestações.
- O sistema de distribuição possui 348 subestações e 179.351km de linhas.
- O atendimento da Copel atende mais de 3,6 milhões de unidades consumidoras em 393 municípios e 1.109 localidades (distritos, vilas e povoados) paranaenses.
- Detalhes do sistema elétrico paranaense: ver arquivo SistemaSul.pdf (obtido em www.ons.org.br).

Sistema de transmissão de Itaipu

• A Itaipu entrega a energia produzida na usina até os pontos de conexão com o Sistema Interligado. No lado brasileiro a conexão é localizado na subestação de Foz do Iguaçu de propriedade de Furnas, e no lado paraguaio, a conexão é realizada na subestação Margem Direita, situada na área da usina de Itaipu.

Figura : Sistema de transmissão de Itaipu.

• Capacidade instalada de geração de energia elétrica (em GW):

Mundo	3.975,1	4.112,4	4.293,1	4.467,6	4.624,8
Estados Unidos	962,9	978,0	986,2	994,9	1.010,2
China	444,1	519,0	625,5	717,4	797,1
Japão	275,3	277,3	278,7	279,2	280,5
Rússia	218,4	219,6	222,1	224,7	224,2
Índia	139,3	147,6	156,6	170,2	177,4
Alemanha	124,6	125,0	131,6	134,1	139,3
Canadá	120,5	122,8	123,9	126,4	127,6
França	117,0	115,8	115,7	116,5	117,8
Brasil	90,8	93,2	96,6	100,4	102,9
Itália	81,3	85,5	89,5	93,6	98,6
Outros	1.401,0	1.428,7	1.466,6	1.510,3	1.549,2

Figura : Capacidade instalada de geração de energia elétrica (em GW).

Capacidade instalada de geração de energia elétrica (em GW):



Figura: Capacidade instalada de geração de energia elétrica (em GW).

• Geração de energia elétrica for fonte:

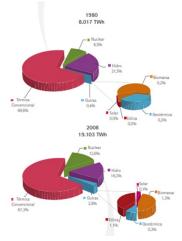


Figura : Geração de energia elétrica for fonte (em %).

• Geração hidrelétrica no mundo:

	2004		2006		2008	Δ% (2008/07)	Part. % (2008)
Mundo	752,4	772,4	795,9	825,2	856,8	3,8	100,0
China	105,2	117,4	128,6	145,3	171,5	18,1	20,0
Estados Unidos	77,6	77,5	77,8	76,9	77,9	0,1	9,1
Brasil	69,0	70,9	73,7	76,9	77,5	0,9	9,1
Canadá	70,7	71,8	72,7	73,3	74,4	0,0	8,5
Rússia	45,5	45,8	46,1	46,8	47,0	0,4	5,5
Índia	32,6	34,2	36,6	38,1	39,3	3,2	4,6
Noruega	26,1	26,4	27,5	27,8	28,2	1,5	3,3
Japão	22,0	22,1	22,2	21,8	21,9	0,1	2,6
França	20,8	20,8	20,8	20,8	20,9	0,2	2,4
Suécia	16,3	16,3	16,2	16,6	16,4	-1,4	1,9
Outros	266,5	269,2	273,7	280,6	283,6	1,1	33,1

Fonte: U.S. Energy Information Administration (EIA). Para o Brasil, dados do Balanço Energético Nacional (BEN) 2011; Elaboração: EPE

• Hidreletricidade no mundo:

	País	%
l a	Noruega	98,5
2º	Brasil	83,2
3ª	Venezuela	72,0
4º	Canadá	58,0
5ª	Suécia	43,1
6 <u>°</u>	Rússia	17,6
7º	Índia	15,3
82	China	15,2
92	Japáo	8,7
10º	Estados Unidos	7,4
	Outros países	14,3
	Mundo	16,4

Fonte: IEA, 2008.

Figura: Hidreletricidade no mundo.

Modelos dos componentes de um SEP

- Principais elementos de um sistema elétrico de potência:
 - \Rightarrow Gerador.
 - \Rightarrow Transformador.
 - ⇒ Linha de transmissão.
 - \Rightarrow Carga.
- Os modelos estudados levam em consideração que:
 - \Rightarrow A rede está em regime permanente senoidal.
 - ⇒ O sistema está operando de forma equilibrada.

Figura : Diagrama unifiliar de um sistema elétrico de potência (Fonte: apostila Profa. Carmem Lucia).