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Chapter 5

The Root-Locus Design
Method

Problems and solutions for Section 5.1

1. Set up the following characteristic equations in the form suited to Evans�s
root-locus method. Give L(s); a(s); and b(s) and the parameter, K; in
terms of the original parameters in each case. Be sure to select K so that
a(s) and b(s) are monic in each case and the degree of b(s) is not greater
than that of a(s):

(a) s+ (1=�) = 0 versus parameter �

(b) s2 + cs+ c+ 1 = 0 versus parameter c

(c) (s+ c)3 +A(Ts+ 1) = 0

i. versus parameter A,
ii. versus parameter T ,
iii. versus the parameter c, if possible. Say why you can or can not.

Can a plot of the roots be drawn versus c for given constant
values of A and T by any means at all

(d) 1 + [kp +
kI
s
+

kDs

�s+ 1
]G(s) = 0: Assume that G(s) = A

c(s)

d(s)
where

c(s) and d(s) are monic polynomials with the degree of d(s) greater
than that of c(s).

i. versus kp
ii. versus kI
iii. versus kD
iv. versus �
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Solution:

(a) K = 1=� ; a = s; b = 1

(b) K = c; a = s2 + 1; b = s+ 1

(c) Part (c)

i. K = AT ; a = (s+ c)3; b = s+ 1=T

ii. K = AT ; a = (s+ c)3 +A; b = s

iii. The parameter c enters the equation in a nonlinear way and a
standard root locus does not apply. However, using a polynomial
solver, the roots can be plotted versus c:

(d) Part (d)

i. K = kpA� ; a = s(s+ 1=�)d(s) + kI(s+ 1=�)c(s) +
kD
�
s2Ac(s);

b = s(s+ 1=�)c(s)

ii. K = AkI ; a = s(s + 1=�)d(s) + Akps(s + 1=�) +
kD
�
s2Ac(s);

b = s(s+ 1=�)c(s)

iii. K =
AkD
�
; a = s(s + 1=�)d(s) + Akps(s + 1=�)c(s) + AkI(s +

1=�)c(s); b = s2c(s)

iv. K = 1=� ; a = s2d(s) + kpAs
2c(s) + kIAsc(s); b = sd(s) +

kpsAc(s) + kIAc(s) + kDs
2Ac(s)
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Problems and solutions for Section 5.2

2. Roughly sketch the root loci for the pole-zero maps as shown in Fig. 5.51.
Show your estimates of the center and angles of the asymptotes, a rough
evaluation of arrival and departure angles for complex poles and zeros,
and the loci for positive values of the parameter K. Each pole-zero map
is from a characteristic equation of the form

1 +K
b(s)

a(s)
= 0;

where the roots of the numerator b(s) are shown as small circles o and the
roots of the denominator a(s) are shown as �0s on the s-plane. Note that
in Fig. 5.51(c), there are two poles at the origin and there are two poles
on the imaginary axis in (f), slightly o¤ the real axis.

Solution:
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We had to make up some numbers to do it on Matlab, so the results
partly depend on what was dreamed up, but the idea here is just get the
basic rules right.

(a)a(s) = s2 + s; b(s) = s+ 1

Breakin(s) -3.43; Breakaway(s) -0.586

(b) a(s) = s2 + 0:2s+ 1; b(s) = s+ 1

Angle of departure: 135.7

Breakin(s) -4.97

(c) a(s) = s2; b(s) = (s+ 1)

Breakin(s) -2

(d) a(s) = s2 + 5s+ 6; b(s) = s2 + s

Breakin(s) -2.37

Breakaway(s) -0.634

(e) a(s) = s3 + 3s2 + 4s� 8

Center of asymptotes -1

Angles of asymptotes �60; 180

Angle of departure: -56.3

(f) a(s) = s3 + 3s2 + s� 5; b(s) = s+ 1

Center of asymptotes -.667

Angles of asymptotes �60; �180

Angle of departure: -90

Breakin(s) -2.06

Breakaway(s) 0:503

But, to get this one right, all you have to do is get the real axis segments
and the 4 asymptotes going out at the right angles. You don�t know,
really, where it breaks away from the real axis nor where the center of
asymptotes are.
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3. For the characteristic equation

1 +
K

s(s+ 1)(s+ 5)
= 0 :

(a) Draw the real-axis segments of the corresponding root locus.

(b) Sketch the asymptotes of the locus for K !1.

(c) For what value of K are the roots on the imaginary axis?

(d) Verify your sketch with a MATLAB plot.

Solution:

(a) The real axis segments are 0 > � > �1; �5 > �

(b) � = �6=3 = �2; �i = �60; 180

(c) Ko = 30

Roo t Loc us
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4. Real poles and zeros. Sketch the root locus with respect to K for the
equation 1 + KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

(a) L(s) =
(s+ 2)

s(s+ 1)(s+ 5)(s+ 10)

(b) L(s) =
1

s(s+ 1)(s+ 5)(s+ 10)

(c) L(s) =
(s+ 2)(s+ 6)

s(s+ 1)(s+ 5)(s+ 10)

(d) L(s) =
(s+ 2)(s+ 4)

s(s+ 1)(s+ 5)(s+ 10)

Solution:

All the root locus plots are displayed at the end of the solution set
for this problem.

(a) � = �4:67; �i = �60; �180; !o = 5:98

(b) � = �4; �i = �45; �135; !o = 1:77

(c) � = �4; �i = �90; !o� > none

(d) � = �5; �i = �90; !o� > none
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5. Complex poles and zeros Sketch the root locus with respect to K for the
equation 1 + KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

(a) L(s) =
1

s2 + 3s+ 10

(b) L(s) =
1

s(s2 + 3s+ 10)

(c) L(s) =
(s2 + 2s+ 8)

s(s2 + 2s+ 10)

(d) L(s) =
(s2 + 2s+ 12)

s(s2 + 2s+ 10)

(e) L(s) =
(s2 + 1)

s(s2 + 4)

(f) L(s) =
(s2 + 4)

s(s2 + 1)

Solution:

All the root locus plots are displayed at the end of the solution set
for this problem.

(a) � = �3; �i = �90; �d = �90 !o� > none

(b) � = �3; �i = �60;�180; �d = �28:3 !o = 3:16

(c) � = �2; �i = �180; �d = �161:6; �a = �200:7; !o� > none

(d) � = �2; �i = �180; �d = �18:4; �a = �16:8; !o� > none

(e) � = 0; �i = �180; �d = �180; �a = �180; !o� > none

(f) � = 0; �i = �180; �d = 0; �a = 0; !o� > none
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6. Multiple poles at the origin Sketch the root locus with respect to K for
the equation 1+KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

(a) L(s) =
1

s2(s+ 8)

(b) L(s) =
1

s3(s+ 8)

(c) L(s) =
1

s4(s+ 8)

(d) L(s) =
(s+ 3)

s2(s+ 8)

(e) L(s) =
(s+ 3)

s3(s+ 4)

(f) L(s) =
(s+ 1)2

s3(s+ 4)

(g) L(s) =
(s+ 1)2

s3(s+ 10)2

Solution:

All the root locus plots are displayed at the end of the solution set
for this problem.

(a) � = �2:67; �i = �60; �180; w0� > none

(b) � = �2; �i = �45; �135; w0� > none

(c) � = �1:6; �i = �36; �108; w0� > none

(d) � = �2:5; �i = �90; w0� > none

(e) � = �0:33; �i = �60; �180; w0� > none

(f) � = �3; �i = �90; w0 = �1:414

(g) � = �6; �i = �60; 180; w0 = �1:31;�7:63
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7. Mixed real and complex poles Sketch the root locus with respect to K for
the equation 1+KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

(a) L(s) =
(s+ 2)

s(s+ 10)(s2 + 2s+ 2)

(b) L(s) =
(s+ 2)

s2(s+ 10)(s2 + 6s+ 25)

(c) L(s) =
(s+ 2)2

s2(s+ 10)(s2 + 6s+ 25)

(d) L(s) =
(s+ 2)(s2 + 4s+ 68)

s2(s+ 10)(s2 + 4s+ 85)

(e) L(s) =
[(s+ 1)2 + 1]

s2(s+ 2)(s+ 3)

Solution:

All the plots are attached at the end of the solution set.

(a) � = �3:33; �i = �60; �180; w0 = �2:32; �d = �6:34

(b) � = �3:5; �i = �45; �135; w0� > none; �d = �103:5

(c) � = �4; �i = �60; �180; w0 = �6:41; �d = �14:6

(d) � = �4; �i = �90; w0� > none; �d = �106; �a = �253:4

(e) � = �1:5; �i = �90; w0� > none; �a = �71:6
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8. Right half plane poles and zeros Sketch the root locus with respect toK for
the equation 1+KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

(a) L(s) =
s+ 2

s+ 10

1

s2 � 1 ; The model for a case of magnetic levitation
with lead compensation.

(b) L(s) =
s+ 2

s(s+ 10)

1

(s2 � 1) ; The magnetic levitation system with in-

tegral control and lead compensation.

(c) L(s) =
s� 1
s2

(d) L(s) =
s2 + 2s+ 1

s(s+ 20)2(s2 � 2s+ 2) : What is the largest value that can
be obtained for the damping ratio of the stable complex roots on this
locus?

(e) L(s) =
(s+ 2)

s(s� 1)(s+ 6)2 ;

(f) L(s) =
1

(s� 1)[(s+ 2)2 + 3]
Solution:

(a) � = �4; �i = �90; w0� > none

(b) � = �4; �i = �60; 180; w0� > none

(c) � = �1; �i = �180; w0� > none

(d) � = �12; �i = �60; 180; w0 = �3:24;�15:37; �d = �92:4

(e) � = �3; �i = �60; 180; w0� > none

(f) � = �1; �i = �60; 180; w0 = �1:732; �d = �40:9
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9. Put the characteristic equation of the system shown in Fig. 5.52 in root
locus form with respect to the parameter � and identify the corresponding
L(s); a(s); and b(s): Sketch the root locus with respect to the parameter �,
estimate the closed-loop pole locations and sketch the corresponding step
responses when � = 0; 0:5, and 2. Use MATLAB to check the accuracy
of your approximate step responses.

Figure 5.52: Control system for problem 9

Solution:

The characteristic equation is s2+2s+5+5�s = 0 and L(s) =
s

s2 + 2s+ 5
:

the root locus and step responses are plotted below.
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10. Use the MATLAB function rltool to study the behavior of the root locus
of 1 +KL(s) for

L(s) =
(s+ a)

s(s+ 1)(s2 + 8s+ 52)

as the parameter a is varied from 0 to 10, paying particular attention to
the region between 2:5 and 3:5. Verify that a multiple root occurs at a
complex value of s for some value of a in this range.

Solution:

For small values of �; the locus branch from 0;�1 makes a circular path
around the zero and the branches from the complex roots curve o¤ toward
the asymptotes. For large values of � the branches from the complex
roots break into the real axis and those from 0; �1 curve o¤ toward the
asymptotes. At about � = 3:11 these loci touch corresponding to complex
multiple roots.
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11. Use the Routh criterion to �nd the range of the gain K for which the
systems in Fig. 5.53 are stable and use the root locus to con�rm your
calculations.

Figure 5.53: Feedback systems for problem 11

Solution:

(a) The system is stable for 0 � K � 478:226 The root locus of
the system and the location of the roots at the crossover points are
shown in the plots

(b) There is a pole in the right hand plane thus the system is unstable
for all values of K as shown in the last plot.
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12. Sketch the root locus for the characteristic equation of the system for
which

L(s) =
(s+ 2)

s(s+ 1)(s+ 5)
;

and determine the value of the root-locus gain for which the complex
conjugate poles have a damping ratio of 0.5.

Solution:

Plot the system on Matlab using rlocus(sys), and use [K]= rloc�nd(sys)
to pick the gain where the damping ratio = 0.5. Find that K = 14
(approximately).
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13. For the system in Fig. 5.54:

Figure 5.54: Feedback system for problem 13

(a) Find the locus of closed-loop roots with respect to K.

(b) Is there a value of K that will cause all roots to have a damping ratio
greater than 0:5?

(c) Find the values of K that yield closed-loop poles with the damping
ratio � = 0:707.

(d) Use MATLAB to plot the response of the resulting design to a refer-
ence step.
Solution:

(a) The locus is plotted below

(b) There is a K which will make the �dominant�poles have damping
0.5 but none that will make the poles from the resonance have that
much damping.

(c) Using rloc�nd, the gain is about 35.

(d) The step response shows the basic form of a well damped response
with the vibration of the response element added.
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14. For the feedback system shown in Fig. 5.55, �nd the value of the gain K
that results in dominant closed-loop poles with a damping ratio � = 0:5.

Figure 5.55: Feedback system for Problem 14

Solution:

Use block diagram reduction to �nd the characteristic equation of the
closed loop system, then divide that up into terms with and without K to

�nd the root locus form, where L(s) =
10s

s2 + s+ 10
: Plugging into Matlab

and using rloc�nd produces the required gain to be K = 0:22:The locus is
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Problems and solutions for Section 5.3

15. A simpli�ed model of the longitudinal motion of a certain helicopter near
hover has the transfer function

G(s) =
9:8(s2 � 0:5s+ 6:3)

(s+ 0:66)(s2 � 0:24s+ 0:15) :

and the characteristic equation 1 +D(s)G(s) = 0. Let D(s) = kp at �rst.

(a) Compute the departure and arrival angles at the complex poles and
zeros.

(b) Sketch the root locus for this system for parameter K = 9:8kp:Use
axes -4 � x � 4. �3 � y � 3;

(c) Verify your answer using MATLAB. Use the command axis([-4 4 -3
3]) to get the right scales.

(d) Suggest a practical (at least as many poles as zeros) alternative com-
pensation D(s) which will at least result in a stable system.

Solution:

(a) � = :92; � = 180; ' = 63:83;  = �26:11

(b)

Root Locus

Real Axis

Im
ag

 A
xi

s

­4 ­3 ­2 ­1 0 1 2 3 4
­3

­2

­1

0

1

2

3

Double lead

D = 9.8kp

Problem 5.15(b)

(c) For this problem a double lead is needed to bring the roots into the
left half-plane. The plot shows the rootlocus for control for. Let

D =
(s+ :66)(s+ :33)

(s+ 5)2
:
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(d)
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Figure 5.56: Control system for problem 5.16

16. For the system given in Fig. 5.56,

(a) plot the root locus of the characteristic equation as the parameter
K1 is varied from 0 to 1 with � = 2. Give the corresponding L(s);
a(s); and b(s):

(b) Repeat part (a) with � = 5. Is there anything special about this
value?

(c) Repeat part (a) for �xed K1 = 2 with the parameter K = � varying
from 0 to 1.

Solution:

The root locus for each part is attached at the end.

(a) L(s) = 0:75
S(0:1S2+1:1S+1:8) =

a(s)
b(s)

(b) L(s)= 0:75
S(0:1S2+1:4S+4:5) =

a(s)
b(s)

(c) L(s)= S(0:1S+0:9)
0:1S^3+0:9S+1:5 =

a(s)
b(s)
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Figure 5.57: Control system for problem 17

17. For the system shown in Fig. 5.57, determine the characteristic equation
and sketch the root locus of it with respect to positive values of the pa-
rameter c. Give L(s), a(s); and b(s) and be sure to show with arrows the
direction in which c increases on the locus.

(a) Solution:

L(s) =
s2 + 9

s3 + 144s
=
a(s)

b(s)
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18. Suppose you are given a system with the transfer function

L(s) =
(s+ z)

(s+ p)2
;

where z and p are real and z > p. Show that the root-locus for 1+KL(s) =
0 with respect to K is a circle centered at z with radius given by

r = (z � p)

Hint. Assume s + z = rej� and show that L(s) is real and negative for
real � under this assumption.

Solution:

s+ z = (z � p)ej�

G=
(z � p)ej�

((z � p)ej� + p� z)2 =
(z � p)ej�

(z � p)2(ej� � 1)2 =
1

(z � p)(�4)( ej�=2�e�j�=22j )2

=
1

�4(z � p)
1

(sin(�=2))2
Because z > p; this function is real and negative

for real � and therefore these points are on the locus.
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19. The loop transmission of a system has two poles at s = �1 and a zero
at s = �2. There is a third real-axis pole p located somewhere to the
left of the zero. Several di¤erent root loci are possible, depending on the
exact location of the third pole. The extreme cases occur when the pole
is located at in�nity or when it is located at s = �2. Give values for p
and sketch the three distinct types of loci.
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20. For the feedback con�guration of Fig. 5.58, use asymptotes, center of
asymptotes, angles of departure and arrival, and the Routh array to sketch
root loci for the characteristic equations of the following feedback control
systems versus the parameter K: Use MATLAB to verify your results.

(a) G(s) =
1

s(s+ 1 + 3j)(s+ 1� 3j) ; H(s) =
s+ 2

s+ 8

(b) G(s) =
1

s2
; H(s) =

s+ 1

s+ 3

(c) G(s) =
(s+ 5)

(s+ 1)
; H(s) =

s+ 7

s+ 3

(d) G(s) =
(s+ 3 + 4j)(s+ 3� 4j)
s(s+ 1 + 2j)(s+ 1� 2j) ; H(s) = 1 + 3s

Figure 5.58: Feedback system for problem 20

Solution:
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21. Consider the system in Fig. 5.59.

Figure 5.59: Feedback system for problem 5.21

(a) Using Routh�s stability criterion, determine all values of K for which
the system is stable.

(b) Use Matlab to �nd the root locus versus K. Find the values for K
at imaginary-axis crossings.

Solution:

(a) a. 0� K � 40

(b) �d = �161:6� �a = 0
�

At imaginary axis crossing s=�j1:8186 k = 6:2758

Root locus is attached for reference.
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Problems and solutions for Section 5.4

22. Let

G(s) =
1

(s+ 2)(s+ 3)
and D(s) = K

s+ a

s+ b
:

Using root-locus techniques, �nd values for the parameters a; b, and K of
the compensation D(s) that will produce closed-loop poles at s = �1� j
for the system shown in Fig. 5.60.

Figure 5.60: Unity feedback system for Problems 5.22 to 5.28 and 5.33

Solution:

Since the desired poles are slower than he plant, we will use PI control.
The solution is to cancel the pole at -3 with the zero and set the gain to
K = 2: Thus, p = 0; z = �3; K = 2:
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23. Suppose that in Fig. 5.60,

G(s) =
1

s(s2 + 2s+ 2)
and D(s) =

K

s+ 2
:

Sketch the root-locus with respect to K of the characteristic equation for
the closed-loop system, paying particular attention to points that generate
multiple roots if KL(s) = D(s)G(s).

Solution:

The locus is plotted below. The roots all come together at s = �1 at
K = 1:
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24. Suppose the unity feedback system of Fig. 5.60 has an open-loop plant

given by G(s) = 1=s2. Design a lead compensation D(s) = K
s+ z

s+ p
to be

added in series with the plant so that the dominant poles of the closed-loop
system are located at s = �2� 2j.

Solution:

Setting the pole of the lead to be at p = �20; the zero is at z = �1:78
with a gain of K = 72: The locus is plotted below.
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25. Assume that the unity feedback system of Fig. 5.60 has the open-loop
plant

G(s) =
1

s(s+ 3)(s+ 6)
:

Design a lag compensation to meet the following speci�cations:

� The step response settling time is to be less than 5 sec.

� The step response overshoot is to be less than 17%.

� The steady-state error to a unit ramp input must not exceed 10%.

Solution:

The overshoot speci�cation requires that damping be 0:5 and the
settling time requires that !n > 1:8: From the root locus plotted
below, these can be met at K = 28 where the !n = 2: With this
gain, the Kv = 28=18 = 1:56: To get a Kv = 10; we need a lag gain
of about 6:5: Selecting the lag zero to be at 0:1 requires the pole
to be at 0:1=6:5 = 0:015: To meet the overshoot speci�cations, it is
necessary to select a smaller K and set p = 0:01: Other choices are
of course possible. The step response of this design is plotted below.
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26. A numerically controlled machine tool positioning servomechanism has a
normalized and scaled transfer function given by

G(s) =
1

s(s+ 1)
:

Performance speci�cations of the system in the unity feedback con�gu-
ration of Fig. 5.60 are satis�ed if the closed-loop poles are located at
s = �1� j

p
3.

(a) Show that this speci�cation cannot be achieved by choosing propor-
tional control alone, D(s) = kp.

(b) Design a lead compensator D(s) = K
s+ z

s+ p
that will meet the speci-

�cation.

Solution:

(a) With proportional control, the poles have real part at s = �:5:

(b) To design a lead, we select the pole to be at p = �10 and �nd the
zero and gain to be z = �3; k = 12:
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27. A servomechanism position control has the plant transfer function

G(s) =
10

s(s+ 1)(s+ 10)
:

You are to design a series compensation transfer functionD(s) in the unity
feedback con�guration to meet the following closed-loop speci�cations:

� The response to a reference step input is to have no more than 16%
overshoot.

� The response to a reference step input is to have a rise time of no
more than 0.4 sec.

� The steady-state error to a unit ramp at the reference input must be
less than 0.02

(a) Design a lead compensation that will cause the system to meet the
dynamic response speci�cations.

(b) If D(s) is proportional control, D(s) = kp; what is the velocity con-
stant Kv?

(c) Design a lag compensation to be used in series with the lead you
have designed to cause the system to meet the steady-state error
speci�cation.

(d) Give the MATLAB plot of the root locus of your �nal design.

(e) Give the MATLAB response of your �nal design to a reference step .

Solution:

(a) Setting the lead pole at p = �60 and the zero at z = �1; the dynamic
speci�cations are met with a gain of 245 resulting in a Kv = 4:

(b) Proportional control will not meet the dynamic spec. The Kv of the
lead is given above.

(c) To meet the steady-state requirement, we need a new Kv = 50; which
is an increase of 12:5: If we set the lag zero at z = �:4; the pole needs
to be at p = �0:032:

(d) The root locus is plotted below.

(e) The step response is plotted below.
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28. Assume the closed-loop system of Fig. 5.60 has a feed forward transfer
function G(s) given by

G(s) =
1

s(s+ 2)
:

Design a lag compensation so that the dominant poles of the closed-loop
system are located at s = �1�j and the steady-state error to a unit ramp
input is less than 0.2.

Solution:

The poles can be put in the desired location with proportional control
alone, with a gain of kp = 2 resulting in a Kv = 1: To get a Kv = 5; we

add a compensation with zero at 0:1 and a pole at 0:02: D(s) = 2
s+ 0:1

s+ 0:02
:
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29. An elementary magnetic suspension scheme is depicted in Fig. 5.61. For
small motions near the reference position, the voltage e on the photo
detector is related to the ball displacement x (in meters) by e = 100x.
The upward force (in newtons) on the ball caused by the current i (in
amperes) may be approximated by f = 0:5i + 20x. The mass of the ball
is 20 g, and the gravitational force is 9.8 N/kg. The power ampli�er is a
voltage-to-current device with an output (in amperes) of i = u+ V0.

Figure 5.61: Elementary magnetic suspension

(a) Write the equations of motion for this setup.

(b) Give the value of the bias V0 that results in the ball being in equilib-
rium at x = 0.

(c) What is the transfer function from u to e?

(d) Suppose the control input u is given by u = �Ke. Sketch the root
locus of the closed-loop system as a function of K.

(e) Assume that a lead compensation is available in the form
U

E
=

D(s) = K
s+ z

s+ p
: Give values of K; z; and p that yields improved

performance over the one proposed in part (d).

Solution:

(a) m�x = 20x+0:5i�mg: Substituting numbers, 0:02�x = 20x+0:5(u+
Vo)� 0:196:

(b) To have the bias cancel gravity, the last two terms must add to zero.
Thus Vo = 0:392:
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(c) Taking transforms of the equation and substituting e = 100x;

E

U
=

2500

s2 � 1000

(d) The locus starts at the two poles symmetric to the imaginary axis,
meet at the origin and cover the imaginary axis. The locus is plotted
below.

(e) The lead can be used to cancel the left-hand-plane zero and the pole
at m�150 which will bring the locus into the left-hand plane where
K can be selected to give a damping of, for example 0.7. See the plot
below.
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n

30. A certain plant with the non minimum phase transfer function

G(s) =
4� 2s

s2 + s+ 9
;

is in a unity positive feedback system with the controller transfer function
D(s):

(a) Use MATLAB to determine a (negative) value for D(s) = K so that
the closed-loop system with negative feedback has a damping ratio
� = 0:707.

(b) Use MATLAB to plot the system�s response to a reference step.

Solution:

(a) With all the negatives, the problem statement might be confusing.
With the G(s) as given, MATLAB needs to plot the negative locus,
which is the regular positive locus for �G: The locus is plotted below.
The value of gain for closed loop roots at damping of 0:7 is k = �1:04

(b) The �nal value of the step response plotted below is �0:887. To get
a positive output we would use a positive gain in positive feedback.
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31. Consider the rocket-positioning system shown in Fig. 5.62.

Figure 5.62: Block diagram for rocket-positioning control system

(a) Show that if the sensor that measures x has a unity transfer function,
the lead compensator

H(s) = K
s+ 2

s+ 4

stabilizes the system.

(b) Assume that the sensor transfer function is modeled by a single pole
with a 0:1 sec time constant and unity DC gain. Using the root-locus
procedure, �nd a value for the gain K that will provide the maximum
damping ratio.
Solution:

(a) The root locus is plotted below and lies entirely in the left-half plane.
However the maximum damping is 0:2:

(b) At maximum damping, the gain is K = 6:25 but the damping of the
complex poles is only 0:073: A practical design would require much
more lead.
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32. For the system in Fig. 5.63:
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Figure 5.63: Control system for Problem 32

(a) Sketch the locus of closed-loop roots with respect to K.

(b) Find the maximum value ofK for which the system is stable. Assume
K = 2 for the remaining parts of this problem.

(c) What is the steady-state error (e = r � y) for a step change in r?
(d) What is the steady-state error in y for a constant disturbance w1?

(e) What is the steady-state error in y for a constant disturbance w2?

(f) If you wished to have more damping, what changes would you make
to the system?
Solution:

(a) For the locus, L(s) =
100(s+ 1)

s2(s2 + 12s+ 40)
: The locus is plotted below.
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(b) The maximum value of K for stability is K = 3:35:
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(c) The equivalent plant with unity feedback isG0 =
200

s2(s2 + 12 + 40) + 200s
:

Thus the system is type 1 with Kv = 1: If the velocity feedback

were zero, the system would be type 2 with Ka =
200

40
= 5:

(d) The transfer function
Y

W1
=

100s2

s2(s2 + 12s+ 40) + 200(s+ 1)
: The

system is thus type 2 with Ka = 100:

(e) The transfer function
Y

W2
=

100

s2(s2 + 12s+ 40) + 200(s+ 1)
: The

system here is type 0 with Kp = 1:

(f) To get more damping in the closed-loop response, the controller needs
to have a lead compensation.

33. Consider the plant transfer function

G(s) =
bs+ k

s2[mMs2 + (M +m)bs+ (M +m)k]

to be put in the unity feedback loop of Fig. 5.60. This is the transfer
function relating the input force u(t) and the position y(t) of mass M in
the non-collocated sensor and actuator problem. In this problem we will
use root-locus techniques to design a controller D(s) so that the closed-
loop step response has a rise time of less than 0.1 sec and an overshoot of
less than 10%. You may use MATLAB for any of the following questions.

(a) Approximate G(s) by assuming that m �= 0, and let M = 1, k = 1,
b = 0:1, and D(s) = K. Can K be chosen to satisfy the performance
speci�cations? Why or why not?

(b) Repeat part (a) assuming D(s) = K(s+ z), and show that K and z
can be chosen to meet the speci�cations.

(c) Repeat part (b) but with a practical controller given by the transfer
function

D(s) = K
p(s+ z)

s+ p
;

and pick p so that the values forK and z computed in part (b) remain
more or less valid.

(d) Now suppose that the small mass m is not negligible, but is given by
m = M=10. Check to see if the controller you designed in part (c)
still meets the given speci�cations. If not, adjust the controller pa-
rameters so that the speci�cations are met.
Solution:

(a) The locus in this case is the imaginary axis and cannot meet the
specs for any K:
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(b) The specs require that � > 0:6; !n > 18: Select z = 15 for a
start. The locus will be a circle with radius 15: Because of the zero,
the overshoot will be increased and Figure 3.32 indicates that we�d
better make the damping greater than 0.7. As a matter of fact,
experimentation shows that we can lower the overshoot of less than
10% only by setting the zero at a low value and putting the poles on
the real axis. The plot shows the result if D = 25(s+ 4):

(c) In this case, we take D(s) = 20
s+ 4

:01s+ 1
:

(d) With the resonance present, the only chance we have is to introduce
a notch as well as a lead. The compensation resulting in the plots

shown is D(s) = 11
s+ 4

(:01s+ 1)

s2=9:25 + s=9:25 + 1

s2=3600 + s=30 + 1
: The design gain

was obtained by a cycle of repeated loci, root location �nding, and
step responses. Refer to the �le ch5p35.m for the design aid.
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Root loci and step responses for Problem 33

34. Consider the type 1 system drawn in Fig. 5.64. We would like to design the
compensation D(s) to meet the following requirements: (1) The steady-
state value of y due to a constant unit disturbance w should be less than
4
5 , and (2) the damping ratio � = 0:7. Using root-locus techniques:

(a) Show that proportional control alone is not adequate.
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Figure 5.64: Control system for problem 34

(b) Show that proportional-derivative control will work.

(c) Find values of the gains kp and kD for D(s) = kp + kD s that meet
the design speci�cations.

Solution:

(a) To meet the error requirements, the input to D(s) is -0:8 and the
output must be 1:0 to cacel the disturbance. Thus the controller dc
gain must be at least 1:25: With proportional control and a closed
loop damping of 0:70, the gain is 0:5 which is too low.

(b) With PD control, the characteristic equation is s2 + (1 + kD)s+ kp:
Setting kp = 1:25 and damping 0:7; we get kD = 0:57: The root loci
and disturbance step response are plotted below.

(c) The gains are kp = 1:25; kD = 0:57:
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Solution for problem 34

Problems and solutions for Section 5.5
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35. Consider the positioning servomechanism system shown in Fig. 5.65, where

ei = Kpot�i; eo = Kpot�o; Kpot = 10V=rad;

T = motor torque = Ktia;

Kt = torque constant = 0:1 N �m=A;= Ke

Ra = armature resistance = 10
;

Gear ratio = 1 : 1;

JL + Jm = total inertia = 10
�3 kg �m2;

C = 200�F;

va = KA(ei � ef ):

Figure 5.65: Positioning servomechanism

(a) What is the range of the ampli�er gain KA for which the system is
stable? Estimate the upper limit graphically using a root-locus plot.

(b) Choose a gain KA that gives roots at � = 0:7. Where are all three
closed-loop root locations for this value of KA?

Solution:

(a) 0 < K < 110
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 Root locus for problem 5.37
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Root locus for problem 35

K = 10:; poles are at s = �10:05; �0:475� j0:475:

36. We wish to design a velocity control for a tape-drive servomechanism. The
transfer function from current I(s) to tape velocity 
(s) (in millimeters
per millisecond per ampere) is


(s)

I(s)
=

15(s2 + 0:9s+ 0:8)

(s+ 1)(s2 + 1:1s+ 1)
:

We wish to design a type 1 feedback system so that the response to a
reference step satis�es

tr � 4msec; ts � 15msec; Mp � 0:05

(a) Use the integral compensator kI=s to achieve type 1 behavior, and
sketch the root-locus with respect to kI . Show on the same plot the
region of acceptable pole locations corresponding to the speci�ca-
tions.

(b) Assume a proportional-integral compensator of the form kp(s+�)=s,
and select the best possible values of kp and � you can �nd. Sketch
the root-locus plot of your design, giving values for kp and �, and
the velocity constant Kv your design achieves. On your plot, indicate
the closed-loop poles with a dot �, and include the boundary of the
region of acceptable root locations.
Solution:

(a) The root locus is plotted with the step response below in the �rst
row.

(b) The zero was put at s = �1:7 and the locus and step response are
plotted in the second row below
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Solution for problem 36

37. The normalized, scaled equations of a cart as drawn in Fig. 5.66 of mass
mc holding an inverted uniform pendulum of mass mp and length ` with
no friction are

�� � � = �v
�y + �� = v

(5.1)

where � =
3mp

4(mc +mp)
is a mass ratio bounded by 0 < � < 0:75. Time is

measured in terms of � = !ot where !2o =
3g(mc +mp)

`(4mc +mp)
: The cart motion,

y; is measured in units of pendulum length as y =
3x

4`
and the input is

force normalized by the system weight, v =
u

g(mc +mp)
: These equations

can be used to compute the transfer functions

�

V
= � 1

s2 � 1 (5.2)

Y

V
=
s2 � 1 + �
s2(s2 � 1) (5.3)

In this problem you are to design a control for this system by �rst closing
a loop around the pendulum, Eq.(5.2) and then, with this loop closed,
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Figure 5.66: Figure of cart-pendulum for Problem 37

closing a second loop around the cart plus pendulum Eq.(5.3). For this
problem, let the mass ratio be mc = 5mp:

(a) Draw a block diagram for the system with V input and both Y and
� as outputs.

(b) Design a lead compensation Dp(s) = Kp
s+ z

s+ p
for the � loop to

cancel the pole at s = �1 and place the two remaining poles at
�4� j4: The new control is U(s) where the force is V (s) = U(s) +
D(s)�(s): Draw the root locus of the angle loop.

(c) Compute the transfer function of the new plant from U to Y with
D(s) in place.

(d) Design a controller Dc(s) for the cart position with the pendulum
loop closed. Draw the root locus with respect to the gain of Dc(s)

(e) Use MATLAB to plot the control, cart position, and pendulum po-
sition for a unit step change in cart position.
Solution:

(a)

2

2 875.0
s

s −

1
1

2 −s

U Θ Y
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(b) Dp(s) = 41
s+ 1

s+ 9
The root locus is shown below.

(c) G1 =
�41

s2 + 8s+ 32

s2 � 0:875
s2

(d) Dc = kc
s2 + 0:2s+ 0:01

s2 + 2s+ 1
: The root locus is shown below.

(e) The step responses are shown below. The pendulum position control
is rather fast for this problem. A more reasonable alternative choice
would be to place the pendulum roots at s = �0:5� j0:5:
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Root loci and step responses for Problem 37

38. Consider the 270-ft U.S. Coast Guard cutter Tampa (902) shown in Fig. 5.67.
Parameter identi�cation based on sea-trials data (Trankle, 1987) was used
to estimate the hydrodynamic coe¢ cients in the equations of motion. The
result is that the response of the heading angle of the ship  to rudder
angle � and wind changes w can be described by the second-order transfer
functions

G�(s) =
 (s)

�(s)
=

�0:0184(s+ 0:0068)
s(s+ 0:2647)(s+ 0:0063)

;

Gw(s) =
 (s)

w(s)
=

0:0000064

s(s+ 0:2647)(s+ 0:0063)
;
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where

 = heading angle, rad

 r = reference heading angle; rad:

r = _ yaw rate; rad=sec;

� = rudder angle; rad;

w = wind speed;m=sec:

Figure 5.67: USCG cutter Tampa (902)

(a) Determine the open-loop settling time of r for a step change in �.

(b) In order to regulate the heading angle  , design a compensator that
uses  and the measurement provided by a yaw-rate gyroscope (that
is, by _ = r). The settling time of  to a step change in  r is speci�ed
to be less than 50 sec, and, for a 5� change in heading the maximum
allowable rudder angle de�ection is speci�ed to be less than 10�.

(c) Check the response of the closed-loop system you designed in part (b)
to a wind gust disturbance of 10 m=sec (model the disturbance as
a step input). If the steady-state value of the heading due to this
wind gust is more than 0:5�, modify your design so that it meets this
speci�cation as well.
Solution:
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(a) From the transfer function �nal value theorem, the �nal value is
0.075. Using the step function in MATLAB, the settling time to 1%
of the �nal value is ts = 316:11 sec.

(b) The maximum de�ection of the rudder is almost surely at the initial
instant, when it is �(0) = K	r(0): Thus to keep � below 10� for a
step of 5�; we need K < 2:and for a settling time less than 50 sec : we
need � > 4:6=50 = 0:092: Drawing the root locus versus K and using
the function rloc�nd we �nd that K = 1:56 gives roots with real
parts less than 0:13: The step response shows that this proportional
control is adequate for the problem.

(c) The steady-state error to a disturbance of 10m= sec is less than 0.35.
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39. Golden Nugget Airlines has opened a free bar in the tail of their airplanes
in an attempt to lure customers. In order to automatically adjust for the
sudden weight shift due to passengers rushing to the bar when it �rst
opens, the airline is mechanizing a pitch-attitude auto pilot. Figure 5.68
shows the block diagram of the proposed arrangement. We will model the
passenger moment as a step disturbanceMp(s) =M0=s, with a maximum
expected value for M0 of 0.6.

(a) What value of K is required to keep the steady-state error in � to
less than 0.02 rad(�= 1�)? (Assume the system is stable.)

(b) Draw a root locus with respect to K.
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Figure 5.68: Golden Nugget Airlines Autopilot

(c) Based on your root locus, what is the value of K when the system
becomes unstable?

(d) Suppose the value of K required for acceptable steady-state behavior
is 600. Show that this value yields an unstable system with roots at

s = �2:9;�13:5;+1:2� 6:6j:

(e) You are given a black box with rate gyro written on the side and told
that when installed, it provides a perfect measure of _�, with output
KT

_�. Assume K = 600 as in part (d) and draw a block diagram
indicating how you would incorporate the rate gyro into the auto
pilot. (Include transfer functions in boxes.)

(f) For the rate gyro in part (e), sketch a root locus with respect to KT .

(g) What is the maximum damping factor of the complex roots obtain-
able with the con�guration in part (e)?

(h) What is the value of KT for part (g)?

(i) Suppose you are not satis�ed with the steady-state errors and damp-
ing ratio of the system with a rate gyro in parts (e) through (h).
Discuss the advantages and disadvantages of adding an integral term
and extra lead networks in the control law. Support your comments
using MATLAB or with rough root-locus sketches.

Solution:

(a) K = 300:

(b) K = 144
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Root locus for problem 5.41
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(c) The characteristic equation is s4 + 14s3 + 45s2 + 650s + 1800: The
exact roots are �13:5;�2:94;�1:22� 6:63:

(d) The output of the rate gyro box would be added at the same spot as
the attitude sensor output.

(e) � = 0:28

(f) KT = 185=600 = 0:31
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Root locus for problem 39f

(g) Integral (PI) control would reduce the steady-state error to the mo-
ment to zero but would make the damping less and the settling time
longer. A lead network could improve the damping of the response.

40. Consider the instrument servomechanism with the parameters given in
Fig. 5.69. For each of the following cases, draw a root locus with respect
to the parameter K, and indicate the location of the roots corresponding
to your �nal design.

(a) Lead network : Let

H(s) = 1; D(s) = K
s+ z

s+ p
;

p

z
= 6:
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Figure 5.69: Control system for problem 40

Select z and K so that the roots nearest the origin (the dominant
roots) yield

� � 0:4; �� � �7; Kv � 16
2

3
sec�1:

(b) Output-velocity (tachometer) feedback : Let

H(s) = 1 +KT s and D(s) = K:

Select KT and K so that the dominant roots are in the same location
as those of part (a). Compute Kv. If you can, give a physical rea-
son explaining the reduction in Kv when output derivative feedback
is used.

(c) Lag network : Let

H(s) = 1 and D(s) = K
s+ 1

s+ p
:

Using proportional control, it is possible to obtain a Kv = 12 at
� = 0:4. Select K and p so that the dominant roots correspond to the
proportional-control case but with Kv = 100 rather than Kv = 12.

Solution:

(a) The Kv requirement leads to K � 55000: With this value, a root
locus can be drawn with the parameter z by setting p = 6z:

1 + z

�
6s(s2 + 51s+ 550) +K

�
s2(s2 + 51s+ 550) +Ks

= 0
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Root locus for Problem 5.40(a)

At the point of maximum damping, the values are z = 17 and the
dominant roots are at about �13� j17:

(b) To �nd the values of K and Kv; we compute a polynomial with
roots at �13 � j17 and a third pole such that the coe¢ cient of s2

is 51;which is at s = �25:15 This calculation leads to K = 11785,
KT = 0:0483 and Kv = 20:81:

(c) The Kv needs to be increased by a factor of 100/12. Thus, we have
p = 0:12: The step responses of these designs are given in the plots
below.
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Step responses for problem 5.42
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Problems and solutions for Section 5.6

41. Plot the loci for the 0� locus or negative K for

(a) The examples given in Problem 3

(b) The examples given in Problem 4

(c) The examples given in Problem 5

(d) The examples given in Problem 6

(e) The examples given in Problem 7

(f) The examples given in Problem 8

Solution:
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Problem 41(a)
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42. Suppose you are given the plant

L(s) =
1

s2 + (1 + �)s+ (1 + �)
;

where � is a system parameter that is subject to variations. Use both
positive and negative root-locus methods to determine what variations in
� can be tolerated before instability occurs.

Solution:

L(s) =
s+ 1

s2 + s+ 1
: the system is stable for all � > �1: The complete

locus is a circle of radius 1 centered on s = �1:

43. Consider the system in Fig. 5.70.

(a) Use Routh�s criterion to determine the regions in the (K1;K2) plane
for which the system is stable.

(b) Use rltool to verify your answer to part (a).
Solution:

(a) De�ne kp = K1 and kI = K1K2 and the characteristic equation is

s4 + 1:5s3 + 0:5s2 + kps+ kI = 0
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Figure 5.70: Feedback system for Problem 43

For this equation, Routh�s criterion requires kI > 0; kp < 0:75; and
4k2p � 3kp + 9kI < 0: The third of these represents a parabola in the
[kp; kI ] plane plotted below. The region of stability is the area under
the parabola and above the kp axis.
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(b) When kI = 0; there is obviously a pole at the origin. For points on
the parabola, consider kp = 3=8 and kI = 1=16: The roots of the
characteristic equation are �1:309; �0:191; and �j0:5:

44. The block diagram of a positioning servomechanism is shown in Fig. 5.71.

(a) Sketch the root locus with respect toK when no tachometer feedback
is present (KT = 0).

(b) Indicate the root locations corresponding to K = 16 on the locus
of part (a). For these locations, estimate the transient-response pa-
rameters tr, Mp, and ts. Compare your estimates to measurements
obtained using the step command in MATLAB.

(c) For K = 16, draw the root locus with respect to KT .
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Figure 5.71: Control system for problem 44

(d) For K = 16 and with KT set so that Mp = 0:05(� = 0:707), estimate
tr and ts. Compare your estimates to the actual values of tr and ts
obtained using MATLAB.

(e) For the values of K and KT in part (d), what is the velocity constant
Kv of this system?

Solution:

(a) The locus is the cross centered at s = �0:5

(b) The roots have a damping of 0.25 and natural frequency of 4. We�d
estimate the overshoot to be Mp = 45% and a rise time of less than
0.45 sec. and settling time more than 4.6 sec. The values from the
plot are approximately: tr = 0:4; Mp = 45%; and ts = 5 sec : Not too
bad.

(c) See below.

(d) Use rloc�nd on the locus vs Kt to �nd the Kt value that yields 0.7
damping. This shows that KT = 3:66: Using the formulas inside the
back cover yields Mp = 0:05; tr = 0:45; and ts = 1:6:
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Root locus vs KT, Problem 5.44(c)
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Plots for problem 44

(e) Applying Eq. (4.33), we see that Kv = K=(Kt + 2) = 2:83:

45. Consider the mechanical system shown in Fig. 5.72, where g and a0 are
gains. The feedback path containing gs controls the amount of rate feed-
back. For a �xed value of a0, adjusting g corresponds to varying the
location of a zero in the s-plane.

(a) With g = 0 and � = 1, �nd a value for a0 such that the poles are
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Figure 5.72: Control system for problem 5.46

complex.

(b) Fix a0 at this value, and construct a root locus that demonstrates
the e¤ect of varying g.
Solution:

(a) The roots are complex for a0 > 0:25: We select a0 = 1 and the roots
are at s = �0:5� 0:866

(b) With respect to g, the root locus equation is s2+ s+1+ gs = 0: The
locus is a circle, plotted below.
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46. Sketch the root locus with respect to K for the system in Fig. 5.73. What
is the range of values of K for which the system is unstable?

Solution:

MATLAB cannot directly plot a root locus for a transcendental function.
However, with the Pade�approximation, a locus valid for small values of
s can be plotted, as shown below.
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Figure 5.73: Control system for problem 5.46

Root locus for problem 5.47 with the (3,3) Pade aproximant
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47. Prove that the plant G(s) = 1=s3 cannot be made unconditionally stable
if pole cancellation is forbidden.

Solution:

The angles of departure from a triple pole are 180 and �60 for the negative
locus and 0 and �120 for the positive locus. In either case, at least one pole
starts out into the right-half plane. Such a system must be conditionally
stable for it will be unstable if the gain is small enough.
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48. For the equation 1 +KG(s) where

G(s) =
1

s(s+ p)[(s+ 1)2 + 4]
;

use MATLAB to examine the root locus as a function of K for p in the
range from p = 1 to p = 10, making sure to include the point p = 2.

Solution:

The root loci for four values are given in the �gure. The point is that the
locus for p = 2 has multiple roots at a complex value of s:

Problem 5.49
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Problem 5.49
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Solutions for problem 48


