MODELO DE PLANO DE ENSINO FICHA № 2 (variável)

Disciplina: Introdução aos Processos Estocásticos en	n Engenharia Elétrica Código: TE229
Natureza: (X) obrigatória () optativa	Semestral (X) Anual () Modular ()
Pré-requisito:	Co-requisito:
Modalidade: (X) Presencial () EaD () 20% EaD	
C.H. Semestral Total: 60h C.H. Anual Total: C.H. Modular Total:	
PD: 00 LB: 00 CP: 00 ES: 00 OR: 00 C.H. Semanal: 4h	

EMENTA (Unidades Didáticas)

Teoria da probabilidade. Variáveis aleatórias. Variáveis aleatórias múltiplas. Processos estocásticos.

PROGRAMA (itens de cada unidade didática)

- 1. Introdução Modelos probabilísticos para engenharia elétrica e da computação
 - Modelos matemáticos como ferramentas de análise e design
 - Modelos determinísticos e probabilísticos
 - Exemplos
- 2. Teoria da probabilidade
 - Espaço de amostras e álgebra de eventos
 - · Conceitos de probabilidade
 - Teorema de Bayes
 - Probabilidade total e condicional
- 3. Variáveis aleatórias discretas
 - Função de massa / distribuição de probabilidade
 - Valor esperado e Momentos de Variável Aleatória Discreta
- 4. Uma variável aleatória
 - Função de distribuição de probabilidade acumulada e densidade de probabilidade
 - Valor esperado e variância
 - Variáveis aleatórias contínuas importantes
 - Funções de variáveis aleatórias
- 5. Par de variáveis aleatórias
 - Par de variáveis aleatórias discretas e contínuas
 - Funções de probabilidades conjuntas: distribuição acumulada, densidade, marginal
 - Independência estatística
 - Covariância e coeciente de correlação
- 6. Vetor de variáveis aleatórias
 - Funções de várias variáveis aleatórias
 - Valores esperados de vetores aleatórios
- 7. Soma de variáveis aleatórias e médias em longo prazo
 - Média das amostras lei dos grandes números
 - Teorema do limite central
 - Convergência de seqüências de variáveis aleatórias
- 8. Processos estocásticos
 - Classificação
 - Momentos
 - Estacionaridade
 - Processos Estocásticos Gaussianos

OBJETIVO GERAL

Conhecer os conceitos de probabilidade e processos estocásticos e suas aplicações em engenharia elétrica. Resolução de problemas ligados a engenharia onde modelos probabilísticos são mais convenientes.

OBJETIVO ESPECÍFICO

Saber analisar um evento probabilístico dentro da engenharia elétrica. Saber definir o espaço de amostras e os eventos de interesse. Classificar e definir as características probabilísticas de um evento (conhecer ou fazer hipótese sobre uma dada distribuição de probabilidade, análise de dependência). Tomada de decisão baseada em dados probabilísticos.

PROCEDIMENTOS DIDÁTICOS

A disciplina será desenvolvida mediante aulas expositivo-dialogadas quando serão apresentados os conteúdos curriculares teóricos, aplicação de exercícios durante a aula e aula específica de resolução de exercícios.

Serão utilizados os seguintes recursos: Quadro branco, pincéis para quadro branco, projetor multimídia.

PLANO DE ENSINO

FICHA Nº 2 (variável)

FORMAS DE AVALIAÇÃO

- 1 Prova escrita 17/03/14
 - Prova escrita sem consulta com formulário fornecido.
- 2 Prova escrita 29/04/14
 - Prova escrita sem consulta com formulário fornecido.
- 3 Prova escrita 03/06/14
 - Prova escrita sem consulta com formulário fornecido.
- 4 Exercícios de simulação e lista de exercícios (1 lista para cada prova / exercícios de simulação podem variar)
- 5 Prova final 14/07/14

Média das notas:

- Provas 1, 2 e 3:
 - o 80% da média.
- Exercícios de simulação e lista de exercícios:
 - 20% da média.

BIBLIOGRAFIA BÁSICA (3 títulos)

- Albuquerque, J. P. A.J. M. P. Fortes W. A. Finamore. Probabilidade, Variáveis Aleatórias e Processos Estocásticos. Editora PUC-Rio, 2008.
- A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering: Pearson/Prentice Hall. 2008.
- Olofsson, P., Andersson, M. Probability, Statistics, and Stochatic Processes. Wiley. 2nd Edition. 2012.

BIBLIOGRAFIA COMPLEMENTAR (2 títulos)

- Hsu, H. P. Schaums Outline of Theory Problems of Probability, Random Variables and Random Processes, Editora Mcgraw-Hill, 2009. 2a edição.
- R. D. Yates and D. J. Goodman, *Probability and stochastic processes: a friendly introduction for electrical and computer engineers:* John Wiley & Sons. 2005.

electrical and computer engineers: John Wiley & Sons, 2005.
S. L. Miller and D. G. Childers, Probability and Random Processes: With Applications to Signal
Processing and Communications: Academic Press, 2012.
Papoulis, A. Probability, Randon Variables Stochastic Processes. McGraw-Hill. 3rd edition. 1991.
Professor da Disciplina: Luis Henrique A. Lolis
Assinatura:

Chefe de Departamento: Oscar da Costa Gouveia Filho	
Assinatura:	<u>-</u>

Legenda: Conforme Resolução 15/10-CEPE: PD- Padrão LB – Laboratório CP – Campo ES – Estágio OR -Orientada